The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1

IF 1.3 2区 数学 Q1 MATHEMATICS
Giovany M. Figueiredo , Marcos T.O. Pimenta , Patrick Winkert
{"title":"The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1","authors":"Giovany M. Figueiredo ,&nbsp;Marcos T.O. Pimenta ,&nbsp;Patrick Winkert","doi":"10.1016/j.na.2024.113677","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the asymptotic behavior of solutions to the <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation <span><span><span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span>as <span><math><mrow><mi>p</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>≔</mo><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>f</mi></math></span> is a Carathéodory function that grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to prove that the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplace problem given by <span><span><span><math><mrow><mo>−</mo><mo>div</mo><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>u</mi></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span>has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space <span><math><mrow><mo>BV</mo><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> of all functions of bounded variation. As far as we know this is the first work dealing with <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplace problems even in the direction of constant sign solutions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113677"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001962","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the asymptotic behavior of solutions to the (p,q)-equation ΔpuΔqu=f(x,u)inΩ,u=0onΩ,as p1+, where N2, 1<p<q<1N/(N1) and f is a Carathéodory function that grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to prove that the (1,q)-Laplace problem given by divu|u|Δqu=f(x,u)inΩ,u=0onΩ,has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space W01,q(Ω) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(Ω) of all functions of bounded variation. As far as we know this is the first work dealing with (1,q)-Laplace problems even in the direction of constant sign solutions.
当 p 变为 1 时,(p,q)-拉普拉斯问题的恒定符号和节点解的渐近行为
本文研究了(p,q)方程 -Δpu-Δqu=f(x,u)inΩ,u=0on∂Ω,as p→1+ 的解的渐近行为,其中 N≥2, 1<p<q<1∗≔N/(N-1) 且 f 是超线性亚临界增长的 Carathéodory 函数。基于对 Nehari 流形的处理,我们能够证明由 -div∇u|∇u|-Δqu=f(x,u)inΩ,u=0on∂Ω 所给出的 (1,q)-Laplace 问题至少有两个恒符号解和一个符号变化解,其中符号变化解在所有符号变化解中能量最小。此外,解属于通常的 Sobolev 空间 W01,q(Ω),这与 1 拉普拉斯问题的情况不同,后者的解只是属于所有有界变化函数的空间 BV(Ω)。据我们所知,这是第一部处理 (1,q) - 拉普拉斯问题的著作,甚至是在常数符号解的方向上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信