Minimization of Dirichlet energy of j−degree mappings between annuli

IF 1.3 2区 数学 Q1 MATHEMATICS
David Kalaj
{"title":"Minimization of Dirichlet energy of j−degree mappings between annuli","authors":"David Kalaj","doi":"10.1016/j.na.2024.113671","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> be circular annuli in the complex plane, and consider the Dirichlet energy integral of <span><math><mi>j</mi></math></span>-degree mappings between <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span>. We aim to minimize this energy integral. The minimizer is a <span><math><mi>j</mi></math></span>-degree harmonic mapping between the annuli <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span>, provided it exists. If such a harmonic mapping does not exist, then the minimizer is still a <span><math><mi>j</mi></math></span>-degree mapping which is harmonic in <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>A</mi></mrow></math></span>, and it is a squeezing mapping in its complementary annulus <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>∖</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>. This result is an extension of a certain result by Astala et al. (2010).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113671"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001901","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A and A be circular annuli in the complex plane, and consider the Dirichlet energy integral of j-degree mappings between A and A. We aim to minimize this energy integral. The minimizer is a j-degree harmonic mapping between the annuli A and A, provided it exists. If such a harmonic mapping does not exist, then the minimizer is still a j-degree mapping which is harmonic in AA, and it is a squeezing mapping in its complementary annulus A=AA. This result is an extension of a certain result by Astala et al. (2010).
环面间 j 度映射的 Dirichlet 能量最小化
假设 A 和 A∗ 是复平面上的圆形环面,并考虑 A 和 A∗ 之间 j 阶映射的 Dirichlet 能量积分。我们的目标是最小化这个能量积分。最小值是环面 A 和 A∗ 之间的 j 度谐波映射,前提是它存在。如果不存在这样的调和映射,那么最小化映射仍然是一个在 A′⊂A 中调和的 j 度映射,并且是其互补环面 A′′=A∖A′ 中的挤压映射。这一结果是对阿斯塔拉等人(2010)的某个结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信