{"title":"Lossless medical ultrasound image compression based on frequency domain decomposition","authors":"Yaqi Zhao, Yue Li","doi":"10.1016/j.jvcir.2024.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Medical ultrasound imaging is a widely used non-invasive method for diagnosing diseases. However, these images contain significant speckle noise, which differs from the characteristics of natural images. This makes effective lossless compression of medical ultrasound images a challenging task. In this paper, we propose a novel hybrid ultrasound image lossless learning compression framework. Firstly, we use the traditional DCT (discrete cosine transform) to transform the original raw pixels of ultrasound images into the frequency domain. Secondly, to effectively compress the numerical values in the frequency domain, we decompose the DCT coefficients into different groups to reduce local and global information redundancy in the frequency domain. Finally, we use learned and non-learned methods to compress the DCT coefficients of different groups separately. The experimental results show that on the Breast ultrasound image dataset, our proposed method achieves a bit rate reduction of 8.6% to 68.9% compared to learned and non-learned methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104306"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002621","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Medical ultrasound imaging is a widely used non-invasive method for diagnosing diseases. However, these images contain significant speckle noise, which differs from the characteristics of natural images. This makes effective lossless compression of medical ultrasound images a challenging task. In this paper, we propose a novel hybrid ultrasound image lossless learning compression framework. Firstly, we use the traditional DCT (discrete cosine transform) to transform the original raw pixels of ultrasound images into the frequency domain. Secondly, to effectively compress the numerical values in the frequency domain, we decompose the DCT coefficients into different groups to reduce local and global information redundancy in the frequency domain. Finally, we use learned and non-learned methods to compress the DCT coefficients of different groups separately. The experimental results show that on the Breast ultrasound image dataset, our proposed method achieves a bit rate reduction of 8.6% to 68.9% compared to learned and non-learned methods.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.