Bin Han , Yuanyuan Yin , Xiaoliang Zhu , Bao-Wen Yang , Shenghui Liu , Lingping Song , Aiguo Liu , Tianyang Xing
{"title":"A subchannel analysis code for advanced liquid metal fast reactor cores and study on heat transfer characteristics of core geometry parameters","authors":"Bin Han , Yuanyuan Yin , Xiaoliang Zhu , Bao-Wen Yang , Shenghui Liu , Lingping Song , Aiguo Liu , Tianyang Xing","doi":"10.1016/j.pnucene.2024.105477","DOIUrl":null,"url":null,"abstract":"<div><div>The liquid metal fast reactor represents an important reactor type for the future development of nuclear energy. Accurately modeling and predicting the subchannel flow and heat transfer phenomenon in the rod bundles plays a key role in ensuring core safety. Consequently, a subchannel code suitable for the liquid metal fast reactor is analyzed based on the subchannel analysis code of the Pressurized Water Reactor (PWR). The modified code incorporates various types of liquid metals, such as lead, lead-bismuth eutectic (LBE), and sodium, along with their constitutive models, enhancing the applicability of the liquid metal reactor systems. This code has been verified and validated at several levels, including comparing the code simulation results with other similar subchannel codes results, high-dimensional Computational Fluid Dynamics (CFD) simulations, and experiment data. The sensitivity analysis of core geometric parameters and turbulent mixing coefficients is performed based on the modified version code. The influence of the core geometry, including the rod Pitch to Diameter ratio (P/D), Rod to Wall gap (RTW) and the wire wrap pitch (H) on the sensitivity of outlet temperature has been investigated. The results show that the new subchannel analysis code suitable for liquid metal cooled reactor shows reasonable agreement with the verified and validated results. The geometric parameters, such as P/D, RTW and H have noticeable effects on the outlet temperature difference of the subchannels. Additionally, the outlet temperature distribution in the subchannel is significantly affected by different turbulent mixing coefficients and the distribution of the turbulent mixing coefficient also influenced by the reactor core sizes. Overall, this study could support the rod bundles design and safety analysis in the liquid metal reactors.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105477"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014919702400427X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The liquid metal fast reactor represents an important reactor type for the future development of nuclear energy. Accurately modeling and predicting the subchannel flow and heat transfer phenomenon in the rod bundles plays a key role in ensuring core safety. Consequently, a subchannel code suitable for the liquid metal fast reactor is analyzed based on the subchannel analysis code of the Pressurized Water Reactor (PWR). The modified code incorporates various types of liquid metals, such as lead, lead-bismuth eutectic (LBE), and sodium, along with their constitutive models, enhancing the applicability of the liquid metal reactor systems. This code has been verified and validated at several levels, including comparing the code simulation results with other similar subchannel codes results, high-dimensional Computational Fluid Dynamics (CFD) simulations, and experiment data. The sensitivity analysis of core geometric parameters and turbulent mixing coefficients is performed based on the modified version code. The influence of the core geometry, including the rod Pitch to Diameter ratio (P/D), Rod to Wall gap (RTW) and the wire wrap pitch (H) on the sensitivity of outlet temperature has been investigated. The results show that the new subchannel analysis code suitable for liquid metal cooled reactor shows reasonable agreement with the verified and validated results. The geometric parameters, such as P/D, RTW and H have noticeable effects on the outlet temperature difference of the subchannels. Additionally, the outlet temperature distribution in the subchannel is significantly affected by different turbulent mixing coefficients and the distribution of the turbulent mixing coefficient also influenced by the reactor core sizes. Overall, this study could support the rod bundles design and safety analysis in the liquid metal reactors.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.