{"title":"A neutronics-fuel coupling model for the simulation of constituent redistribution in U–Zr fuel","authors":"Oscar Lastres, Yunlin Xu, Yi Xie","doi":"10.1016/j.pnucene.2024.105467","DOIUrl":null,"url":null,"abstract":"<div><div>Simulating the dynamic redistribution of elements within metallic fuels, such as U–10Zr (wt.%), is a complex challenge in nuclear power research. While existing models can adequately simulate constituent redistribution throughout the fuel pin, they rely heavily on pre-known power history data or power calculated <em>a priori</em>. Furthermore, existing models do not calculate an accurate actinide inventory throughout the fuel pin. This limitation leads to less precise power distribution calculations, which can negatively affect the efficiency and safety of fuel design and performance. This work aims to introduce a new approach to modeling constituent redistribution for U–10Zr (wt.%) fuel by developing a new code called PFPS that accounts for the depletion and diffusion of Zr throughout the fuel pin during burnup through an explicit coupling method. The approach independently calculates the power distribution by coupling with the reactor physics code, Serpent 2, thereby eliminating the need for externally supplied power history data. The main contribution of this study lies in this coupling to obtain a more accurate history of the compositional evolution of U–Zr fuel and its fission products. This procedure can enhance the understanding of constituent redistribution by calculating a more accurate power distribution and lays the foundation for future attempts to simulate the compositional and microstructural evolution of all materials in the fuel.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105467"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating the dynamic redistribution of elements within metallic fuels, such as U–10Zr (wt.%), is a complex challenge in nuclear power research. While existing models can adequately simulate constituent redistribution throughout the fuel pin, they rely heavily on pre-known power history data or power calculated a priori. Furthermore, existing models do not calculate an accurate actinide inventory throughout the fuel pin. This limitation leads to less precise power distribution calculations, which can negatively affect the efficiency and safety of fuel design and performance. This work aims to introduce a new approach to modeling constituent redistribution for U–10Zr (wt.%) fuel by developing a new code called PFPS that accounts for the depletion and diffusion of Zr throughout the fuel pin during burnup through an explicit coupling method. The approach independently calculates the power distribution by coupling with the reactor physics code, Serpent 2, thereby eliminating the need for externally supplied power history data. The main contribution of this study lies in this coupling to obtain a more accurate history of the compositional evolution of U–Zr fuel and its fission products. This procedure can enhance the understanding of constituent redistribution by calculating a more accurate power distribution and lays the foundation for future attempts to simulate the compositional and microstructural evolution of all materials in the fuel.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.