Péter Kirchknopf , Zoltán Kató , Csongor Kristóf Szarvas , Péter Völgyesi , Imre Szalóki
{"title":"Monte Carlo based absolute efficiency calibration of power reactor spent fuel NDA measurements","authors":"Péter Kirchknopf , Zoltán Kató , Csongor Kristóf Szarvas , Péter Völgyesi , Imre Szalóki","doi":"10.1016/j.anucene.2024.110953","DOIUrl":null,"url":null,"abstract":"<div><div>Experiments have been carried out at Paks Nuclear Power Plant for the purpose of spent fuel burnup characterization using gamma-ray spectrometry. Obtaining absolute quantitative information, e.g. fission product activities, from the spectra requires accurate knowledge of the detection efficiency. Due to nature of the measurement conditions, experimental calibration was unfeasible, and the Monte Carlo particle transport method was selected to calculate the efficiency. The model building process is presented, which involves X-ray radiography of the germanium detector, optimization of the dead layer on the outside of the crystal, and a solution to the challenging low-efficiency simulation problem. The simulations were validated using measurements carried out at the Paks reactor units together with verified experimental data from the SFCOMPO library. The constructed model proved to be accurate to the results determined by empirical methods within ±3 % error, promising to be a reliable basis for future applications that require spent fuel characterization.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006169","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Experiments have been carried out at Paks Nuclear Power Plant for the purpose of spent fuel burnup characterization using gamma-ray spectrometry. Obtaining absolute quantitative information, e.g. fission product activities, from the spectra requires accurate knowledge of the detection efficiency. Due to nature of the measurement conditions, experimental calibration was unfeasible, and the Monte Carlo particle transport method was selected to calculate the efficiency. The model building process is presented, which involves X-ray radiography of the germanium detector, optimization of the dead layer on the outside of the crystal, and a solution to the challenging low-efficiency simulation problem. The simulations were validated using measurements carried out at the Paks reactor units together with verified experimental data from the SFCOMPO library. The constructed model proved to be accurate to the results determined by empirical methods within ±3 % error, promising to be a reliable basis for future applications that require spent fuel characterization.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.