{"title":"Ab initio study of iron-doped zinc oxide for efficient dye degradation","authors":"Muhammad Abdul Moiz","doi":"10.1016/j.comptc.2024.114886","DOIUrl":null,"url":null,"abstract":"<div><div>First principle calculations were performed on iron doped zinc oxide (Fe-ZO) to reduce its bandgap to optimize its visible light absorption. The doping of iron in the ZO is done via supercells of <em>Zn</em><sub>1-x</sub><em>Fe<sub>x</sub>O</em>. The doped systems are analyzed using generalized gradient approximation plane wave pseudopotential on density functional theory, or local density approximation and LDA + U with PBE. The computational analysis reveals that the bandgap reduced with increasing dopant concentration. Furthermore, a robust absorption is observed toward the visible region of the spectrum. This enhances its ability as a photochemical material to increase degradation rates of industrial grade dyes.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114886"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004250","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
First principle calculations were performed on iron doped zinc oxide (Fe-ZO) to reduce its bandgap to optimize its visible light absorption. The doping of iron in the ZO is done via supercells of Zn1-xFexO. The doped systems are analyzed using generalized gradient approximation plane wave pseudopotential on density functional theory, or local density approximation and LDA + U with PBE. The computational analysis reveals that the bandgap reduced with increasing dopant concentration. Furthermore, a robust absorption is observed toward the visible region of the spectrum. This enhances its ability as a photochemical material to increase degradation rates of industrial grade dyes.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.