Simon Muntwiler, Johannes Köhler, Melanie N. Zeilinger
{"title":"Nonlinear functional estimation: Functional detectability and full information estimation","authors":"Simon Muntwiler, Johannes Köhler, Melanie N. Zeilinger","doi":"10.1016/j.automatica.2024.111945","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce a novel functional detectability notion in the form of incremental input/output-to-output stability (<span><math><mi>δ</mi></math></span>-IOOS). We show that <span><math><mi>δ</mi></math></span>-IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property. Additionally, we prove that a system is functional detectable if and only if it admits a corresponding <span><math><mi>δ</mi></math></span>-IOOS Lyapunov function. Furthermore, <span><math><mi>δ</mi></math></span>-IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed functional estimator design is illustrated with a numerical example of a power system.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111945"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004394","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce a novel functional detectability notion in the form of incremental input/output-to-output stability (-IOOS). We show that -IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property. Additionally, we prove that a system is functional detectable if and only if it admits a corresponding -IOOS Lyapunov function. Furthermore, -IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed functional estimator design is illustrated with a numerical example of a power system.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.