{"title":"A separation principle for the prescribed-time stabilization of a class of nonlinear systems","authors":"Hefu Ye, Yongduan Song","doi":"10.1016/j.automatica.2024.111983","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the recent development of prescribed-time control theory, the highly desirable separation principle remains unavailable for nonlinear systems with only the output being measurable. In this paper, for the first time we establish such separation principle for a class of nonlinear systems, such that the prescribed-time observer and prescribed-time controller can be designed independently, and the parameter designs do not affect each other. Our method makes use of two parametric Lyapunov equations (PLEs) to generate two symmetric positive-definite matrices, aiming to avoid conservative treatments of nonlinear functions commonly associated with high-gain methods during the design process. Our work provides a stronger version of the matrix pencil formulation that is applicable when nonlinearities satisfy the so-called linear growth condition, even if the growth rate is unknown. In our method the selection of design parameters is straightforward as it involves only three parameters: one for the prescribed convergence time <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, and the other two are for the controller and the observer respectively, and the choice of the latter two parameters does not affect each other. Once the system order is determined, one can directly obtain reasonable ranges for these two parameters. Numerical simulations verify the effectiveness of the proposed method.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111983"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004771","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the recent development of prescribed-time control theory, the highly desirable separation principle remains unavailable for nonlinear systems with only the output being measurable. In this paper, for the first time we establish such separation principle for a class of nonlinear systems, such that the prescribed-time observer and prescribed-time controller can be designed independently, and the parameter designs do not affect each other. Our method makes use of two parametric Lyapunov equations (PLEs) to generate two symmetric positive-definite matrices, aiming to avoid conservative treatments of nonlinear functions commonly associated with high-gain methods during the design process. Our work provides a stronger version of the matrix pencil formulation that is applicable when nonlinearities satisfy the so-called linear growth condition, even if the growth rate is unknown. In our method the selection of design parameters is straightforward as it involves only three parameters: one for the prescribed convergence time , and the other two are for the controller and the observer respectively, and the choice of the latter two parameters does not affect each other. Once the system order is determined, one can directly obtain reasonable ranges for these two parameters. Numerical simulations verify the effectiveness of the proposed method.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.