Geodesics cross any pattern in first-passage percolation without any moment assumption and with possibly infinite passage times

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Antonin Jacquet
{"title":"Geodesics cross any pattern in first-passage percolation without any moment assumption and with possibly infinite passage times","authors":"Antonin Jacquet","doi":"10.1016/j.spa.2024.104496","DOIUrl":null,"url":null,"abstract":"<div><div>In first-passage percolation, one places nonnegative i.i.d. random variables (<span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>) on the edges of <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. A geodesic is an optimal path for the passage times <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>. Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. When we assume that the common distribution of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic. This paper completes this study by showing that this result remains true when we consider distributions with an unbounded support without any moment assumption or distributions with possibly infinite passage times. The techniques of proof differ from the preceding article and rely on a notion of penalized geodesic.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104496"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (T(e)) on the edges of Zd. A geodesic is an optimal path for the passage times T(e). Consider a local property of the time environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate of this pattern. When we assume that the common distribution of the passage times satisfies a suitable moment assumption, it is shown in [Antonin Jacquet. Geodesics in first-passage percolation cross any pattern, arXiv:2204.02021, 2023] that, apart from an event with exponentially small probability, this number is linear in the distance between the extremities of the geodesic. This paper completes this study by showing that this result remains true when we consider distributions with an unbounded support without any moment assumption or distributions with possibly infinite passage times. The techniques of proof differ from the preceding article and rely on a notion of penalized geodesic.
测地线在第一通道渗流中穿过任何模式,无需任何矩假设,且通道时间可能无限长
在第一通道渗滤中,我们将非负 i.i.d. 随机变量 (T(e)) 放在 Zd 的边上。大地线是通过时间 T(e) 的最优路径。考虑时间环境的局部属性。我们称之为模式。我们将研究一条大地线穿过该模式平移的次数。当我们假设通过时间的共同分布满足一个合适的矩假设时,[Antonin Jacquet.第一通道渗流中的大地线穿过任何图案,arXiv:2204.02021, 2023]中表明,除了指数级小概率事件外,这一次数与大地线极点之间的距离呈线性关系。本文通过证明当我们考虑不带任何矩假设的无界支持分布或可能具有无限通过时间的分布时,这一结果仍然成立,从而完成了这一研究。证明技术与前文不同,它依赖于惩罚性大地线的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信