{"title":"MG-Net: A fetal brain tissue segmentation method based on multiscale feature fusion and graph convolution attention mechanisms","authors":"","doi":"10.1016/j.cmpb.2024.108451","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Fetal brain tissue segmentation provides foundational support for comprehensively understanding the neurodevelopment of normal and congenital disease-affected fetuses. Manual labeling is very time-consuming, and automated segmentation methods can greatly improve the efficiency of doctors. At the same time, fetal brain tissue undergoes various changes throughout the pregnancy, leading to a continuous change in tissue contrast, which greatly increases the difficulty of training segmentation methods. This study aims to develop an automated segmentation model that can efficiently and accurately segment fetal brain tissue, improving the workflow for medical professionals.</div></div><div><h3>Methods:</h3><div>We propose a novel deep learning-based segmentation model that incorporates three innovative components: Firstly, a new Dual Dilated Attention Block (DDAB) is proposed in the encoder part to enhance the feature extraction of local spatial and structural contextual information. Secondly, a Multi-scale Deformable Transformer (MSDT) is integrated into the bottleneck to improve the feature extraction of global information on local spatial and structural contextual information. Thirdly, we use a novel block based on Graph Convolution Attention (GCAB) in the decoder, which effectively enhances the features at the decoder.The code is available at <span><span>https://github.com/unicoco7/MG-Net/</span><svg><path></path></svg></span>.</div></div><div><h3>Results:</h3><div>We trained and tested on the FeTA 2021 and FeTA 2022 datasets, and evaluated using seven popular metrics, including Dice, IoU, MAE, BoundaryF, PRE, SEN, and SPE. Compared to the current state-of-the-art 3D segmentation models such as nnFormer, SwinUNETR, and 3DUX-net, our proposed method has surpassed all of them in metrics like Dice, IoU, and MAE. Specifically, on the FeTA 2021 dataset, our model achieved a Dice of 0.8666, an IoU of 0.7646, and an MAE of 0.0027; on the FeTA 2022 dataset, it achieved a Dice of 0.8552, an IoU of 0.7470, and an MAE of 0.0005.</div></div><div><h3>Conclusion:</h3><div>In this paper, we propose a model for three-dimensional fetal brain tissue segmentation based on multi-scale feature fusion and graph convolution attention mechanism, and conduct experimental evaluation on the FeTA 2021 and FeTA 2022 datasets. Understanding the boundaries of fetal brain tissue is crucial for doctors’ diagnosis, so the proposed model is expected to improve the speed and accuracy of doctors’ diagnoses.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
Fetal brain tissue segmentation provides foundational support for comprehensively understanding the neurodevelopment of normal and congenital disease-affected fetuses. Manual labeling is very time-consuming, and automated segmentation methods can greatly improve the efficiency of doctors. At the same time, fetal brain tissue undergoes various changes throughout the pregnancy, leading to a continuous change in tissue contrast, which greatly increases the difficulty of training segmentation methods. This study aims to develop an automated segmentation model that can efficiently and accurately segment fetal brain tissue, improving the workflow for medical professionals.
Methods:
We propose a novel deep learning-based segmentation model that incorporates three innovative components: Firstly, a new Dual Dilated Attention Block (DDAB) is proposed in the encoder part to enhance the feature extraction of local spatial and structural contextual information. Secondly, a Multi-scale Deformable Transformer (MSDT) is integrated into the bottleneck to improve the feature extraction of global information on local spatial and structural contextual information. Thirdly, we use a novel block based on Graph Convolution Attention (GCAB) in the decoder, which effectively enhances the features at the decoder.The code is available at https://github.com/unicoco7/MG-Net/.
Results:
We trained and tested on the FeTA 2021 and FeTA 2022 datasets, and evaluated using seven popular metrics, including Dice, IoU, MAE, BoundaryF, PRE, SEN, and SPE. Compared to the current state-of-the-art 3D segmentation models such as nnFormer, SwinUNETR, and 3DUX-net, our proposed method has surpassed all of them in metrics like Dice, IoU, and MAE. Specifically, on the FeTA 2021 dataset, our model achieved a Dice of 0.8666, an IoU of 0.7646, and an MAE of 0.0027; on the FeTA 2022 dataset, it achieved a Dice of 0.8552, an IoU of 0.7470, and an MAE of 0.0005.
Conclusion:
In this paper, we propose a model for three-dimensional fetal brain tissue segmentation based on multi-scale feature fusion and graph convolution attention mechanism, and conduct experimental evaluation on the FeTA 2021 and FeTA 2022 datasets. Understanding the boundaries of fetal brain tissue is crucial for doctors’ diagnosis, so the proposed model is expected to improve the speed and accuracy of doctors’ diagnoses.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.