On the exponential stability of uniformly damped wave equations and their structure-preserving discretization

IF 1.4 Q2 MATHEMATICS, APPLIED
H. Egger , S. Kurz , R. Löscher
{"title":"On the exponential stability of uniformly damped wave equations and their structure-preserving discretization","authors":"H. Egger ,&nbsp;S. Kurz ,&nbsp;R. Löscher","doi":"10.1016/j.rinam.2024.100502","DOIUrl":null,"url":null,"abstract":"<div><div>We study damped wave propagation problems phrased as abstract evolution equations in Hilbert spaces. Under some general assumptions, including a natural compatibility condition for initial values, we establish exponential decay estimates for mild solutions using Lyapunov-type arguments. For the formulation of our results, we use the language of Hilbert complexes which provides all the tools required for our analysis and is also general enough to cover a number of interesting examples. Some of these are briefly discussed in the course of the manuscript. The functional analytic setting and the main arguments in our proofs are chosen such that they transfer almost verbatim to the discrete setting. We thus obtain corresponding decay results for numerical approximations of a variety of problems obtained by compatible discretization strategies which can be seen as our main contribution.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100502"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study damped wave propagation problems phrased as abstract evolution equations in Hilbert spaces. Under some general assumptions, including a natural compatibility condition for initial values, we establish exponential decay estimates for mild solutions using Lyapunov-type arguments. For the formulation of our results, we use the language of Hilbert complexes which provides all the tools required for our analysis and is also general enough to cover a number of interesting examples. Some of these are briefly discussed in the course of the manuscript. The functional analytic setting and the main arguments in our proofs are chosen such that they transfer almost verbatim to the discrete setting. We thus obtain corresponding decay results for numerical approximations of a variety of problems obtained by compatible discretization strategies which can be seen as our main contribution.
论均匀阻尼波方程的指数稳定性及其结构保留离散化
我们研究的阻尼波传播问题是希尔伯特空间中的抽象演化方程。在一些一般假设(包括初始值的自然相容条件)下,我们利用 Lyapunov 型论证建立了温和解的指数衰减估计。在表述我们的结果时,我们使用了希尔伯特复数语言,它为我们的分析提供了所需的全部工具,而且足够通用,可以涵盖许多有趣的例子。手稿中将简要讨论其中一些例子。我们选择的函数解析环境和证明中的主要论点几乎可以逐字转换到离散环境中。因此,我们获得了通过兼容离散化策略对各种问题进行数值逼近的相应衰减结果,这可以看作是我们的主要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信