A novel cut-out piezoelectric beam with limiters for broadband energy harvesting

IF 2.8 3区 工程技术 Q2 MECHANICS
Junchao Li , Xiaofang Zhang , Wenan Jiang , Qinsheng Bi , Liqun Chen
{"title":"A novel cut-out piezoelectric beam with limiters for broadband energy harvesting","authors":"Junchao Li ,&nbsp;Xiaofang Zhang ,&nbsp;Wenan Jiang ,&nbsp;Qinsheng Bi ,&nbsp;Liqun Chen","doi":"10.1016/j.ijnonlinmec.2024.104919","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we proposed a novel cut-out piezoelectric beam with two pairs of motion limiter for broadband operation. By means of the finite element simulation, a superior geometric structure of the corresponding linear model is designed and the model parameters are determined, then the simulation results are verified by experiments. The subsequent experiments mainly investigate the effect of the position of the limiter on the beam and the size of the limiting gap on the amplitude–frequency response of the system. The experimental results show that the frequency bandwidth of the first resonance peak can be significantly expanded from 2.45Hz to 6.28Hz by selecting suitable limiter parameters, which can increase of 256.33% compared with no limiter. Meanwhile, limiters also cause a maximum 171.79% increase in the primary resonance voltage amplitude, and the level of anti-resonance valley can be increased up to 5.35 times. Finally, the influence of external resistance load on the output power of the system is discussed through detailed parametric study, and the maximum power output of 370<span><math><mi>μ</mi></math></span>W is achieved.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104919"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002841","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a novel cut-out piezoelectric beam with two pairs of motion limiter for broadband operation. By means of the finite element simulation, a superior geometric structure of the corresponding linear model is designed and the model parameters are determined, then the simulation results are verified by experiments. The subsequent experiments mainly investigate the effect of the position of the limiter on the beam and the size of the limiting gap on the amplitude–frequency response of the system. The experimental results show that the frequency bandwidth of the first resonance peak can be significantly expanded from 2.45Hz to 6.28Hz by selecting suitable limiter parameters, which can increase of 256.33% compared with no limiter. Meanwhile, limiters also cause a maximum 171.79% increase in the primary resonance voltage amplitude, and the level of anti-resonance valley can be increased up to 5.35 times. Finally, the influence of external resistance load on the output power of the system is discussed through detailed parametric study, and the maximum power output of 370μW is achieved.
用于宽带能量采集的带限幅器的新型切割压电光束
本文提出了一种带有两对运动限制器的新型切割式压电横梁,可实现宽带运行。通过有限元仿真,设计了相应线性模型的优越几何结构,确定了模型参数,并通过实验验证了仿真结果。随后的实验主要研究了限幅器在横梁上的位置和限幅间隙的大小对系统幅频响应的影响。实验结果表明,通过选择合适的限幅器参数,第一谐振峰的频率带宽可从 2.45Hz 显著扩展到 6.28Hz,与不使用限幅器相比可增加 256.33%。同时,限幅器还可使初级谐振电压幅值最大增加 171.79%,反谐振谷水平最高可增加 5.35 倍。最后,通过详细的参数研究讨论了外部电阻负载对系统输出功率的影响,并实现了 370μW 的最大功率输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信