V-LTCS: Backbone exploration for Multimodal Misogynous Meme detection

Sneha Chinivar , Roopa M.S. , Arunalatha J.S. , Venugopal K.R.
{"title":"V-LTCS: Backbone exploration for Multimodal Misogynous Meme detection","authors":"Sneha Chinivar ,&nbsp;Roopa M.S. ,&nbsp;Arunalatha J.S. ,&nbsp;Venugopal K.R.","doi":"10.1016/j.nlp.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><div>Memes have become a fundamental part of online communication and humour, reflecting and shaping the culture of today’s digital age. The amplified Meme culture is inadvertently endorsing and propagating casual Misogyny. This study proposes V-LTCS (Vision- Language Transformer Combination Search), a framework that encompasses all possible combinations of the most fitting Text (<em>i.e.</em> BERT, ALBERT, and XLM-R) and Vision (<em>i.e.</em> Swin, ConvNeXt, and ViT) Transformer Models to determine the backbone architecture for identifying Memes that contains misogynistic contents. All feasible Vision-Language Transformer Model combinations obtained from the recognized optimal Text and Vision Transformer Models are evaluated on two (smaller and larger) datasets using varied standard metrics (<em>viz.</em> Accuracy, Precision, Recall, and F1-Score). The BERT-ViT combinational Transformer Model demonstrated its efficiency on both datasets, validating its ability to serve as a backbone architecture for all subsequent efforts to recognize Multimodal Misogynous Memes.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"9 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Memes have become a fundamental part of online communication and humour, reflecting and shaping the culture of today’s digital age. The amplified Meme culture is inadvertently endorsing and propagating casual Misogyny. This study proposes V-LTCS (Vision- Language Transformer Combination Search), a framework that encompasses all possible combinations of the most fitting Text (i.e. BERT, ALBERT, and XLM-R) and Vision (i.e. Swin, ConvNeXt, and ViT) Transformer Models to determine the backbone architecture for identifying Memes that contains misogynistic contents. All feasible Vision-Language Transformer Model combinations obtained from the recognized optimal Text and Vision Transformer Models are evaluated on two (smaller and larger) datasets using varied standard metrics (viz. Accuracy, Precision, Recall, and F1-Score). The BERT-ViT combinational Transformer Model demonstrated its efficiency on both datasets, validating its ability to serve as a backbone architecture for all subsequent efforts to recognize Multimodal Misogynous Memes.
V-LTCS:多模态猥亵备忘录检测的主干探索
备忘录已成为网络交流和幽默的基本组成部分,反映并塑造了当今数字时代的文化。被放大的备忘录文化无意中认可并传播了随意的厌女症。本研究提出了 V-LTCS(视觉-语言转换器组合搜索)框架,该框架涵盖了最合适的文本(即 BERT、ALBERT 和 XLM-R)和视觉(即 Swin、ConvNeXt 和 ViT)转换器模型的所有可能组合,以确定识别包含厌女症内容的 Memes 的骨干架构。在两个(较小和较大)数据集上使用各种标准指标(即准确率、精确度、召回率和 F1-分数)对从公认的最佳文本和视觉转换器模型中获得的所有可行视觉语言转换器模型组合进行评估。BERT-ViT 组合转换器模型在这两个数据集上都表现出了很高的效率,从而证明了它有能力成为后续识别多模态厌女症备忘录的骨干架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信