{"title":"Research on indoor multi-floor positioning method based on LoRa","authors":"","doi":"10.1016/j.comnet.2024.110838","DOIUrl":null,"url":null,"abstract":"<div><div>Existing floor localization methods are plagued by low accuracy, high algorithmic complexity, dense node deployment, susceptibility to environmental factors, and the inability to track trajectories. This paper introduces a localization method designed to address the challenges of multi-floor environments, leveraging LoRa technology. The approach involves deploying LoRa vertical positioning devices and establishing offline and threshold fingerprint databases. To enhance localization accuracy, it combines Time-of-Flight (TOF) ranging values (referred to as \"RANGE\" in this paper) with Received Signal Strength Indicator (RSSI) values, referred to as \"RSSI-RANGE\". Subsequently, a multi-floor determination is achieved using the RSSI-RANGE floor determination algorithm and a range-based signal source autonomous switching mechanism. The fingerprinting technique is then employed for trajectory recognition. Comprehensive vertical information is obtained by combining floor determination and trajectory award. Gaussian filtering is utilized for fingerprint preprocessing to eliminate gross errors. The particle swarm optimization algorithm is employed to fine-tune the hyperparameters of the random forest algorithm following noise reduction. Using the random forest algorithm, optimal RSSI-RANGE values are derived, and the offline fingerprint database is established by applying Kriging interpolation. Localization is then achieved in the concluding online recognition phase. Empirical findings illustrate the system's high floor accuracy rate of 97.8%, achieving high determination accuracy and comprehensive floor localization when combined with trajectory recognition.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006704","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Existing floor localization methods are plagued by low accuracy, high algorithmic complexity, dense node deployment, susceptibility to environmental factors, and the inability to track trajectories. This paper introduces a localization method designed to address the challenges of multi-floor environments, leveraging LoRa technology. The approach involves deploying LoRa vertical positioning devices and establishing offline and threshold fingerprint databases. To enhance localization accuracy, it combines Time-of-Flight (TOF) ranging values (referred to as "RANGE" in this paper) with Received Signal Strength Indicator (RSSI) values, referred to as "RSSI-RANGE". Subsequently, a multi-floor determination is achieved using the RSSI-RANGE floor determination algorithm and a range-based signal source autonomous switching mechanism. The fingerprinting technique is then employed for trajectory recognition. Comprehensive vertical information is obtained by combining floor determination and trajectory award. Gaussian filtering is utilized for fingerprint preprocessing to eliminate gross errors. The particle swarm optimization algorithm is employed to fine-tune the hyperparameters of the random forest algorithm following noise reduction. Using the random forest algorithm, optimal RSSI-RANGE values are derived, and the offline fingerprint database is established by applying Kriging interpolation. Localization is then achieved in the concluding online recognition phase. Empirical findings illustrate the system's high floor accuracy rate of 97.8%, achieving high determination accuracy and comprehensive floor localization when combined with trajectory recognition.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.