Edge-device collaborative computing for multi-view classification

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
{"title":"Edge-device collaborative computing for multi-view classification","authors":"","doi":"10.1016/j.comnet.2024.110823","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the proliferation of Internet-of-Thing (IoT) devices and the rapid advances in the field of deep learning, there is a growing interest in pushing deep learning computations, conventionally handled by the cloud, to the edge of the network to deliver faster responses to end users, reduce bandwidth consumption to the cloud, and address privacy concerns. However, to fully realize deep learning at the edge, two main challenges still need to be addressed: (i) how to meet the high resource requirements of deep learning on resource-constrained devices, and (ii) how to leverage the availability of multiple streams of spatially correlated data, to increase the effectiveness of deep learning and improve application-level performance. To address the above challenges, we explore <em>collaborative inference</em> at the edge, in which edge nodes and end devices share correlated data and the inference computational burden by leveraging different ways to split computation and fuse data. Besides traditional centralized and distributed schemes for edge-end device collaborative inference, we introduce <em>selective schemes</em> that decrease bandwidth resource consumption by effectively reducing data redundancy. As a reference scenario, we focus on multi-view classification in a networked system in which sensing nodes can capture overlapping fields of view. The proposed schemes are compared in terms of accuracy, computational expenditure at the nodes, communication overhead, inference latency, robustness, and noise sensitivity. Experimental results highlight that selective collaborative schemes can achieve different trade-offs between the above performance metrics, with some of them bringing substantial communication savings (from 18% to 74% of the transmitted data with respect to centralized inference) while still keeping the inference accuracy well above 90%.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006558","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the proliferation of Internet-of-Thing (IoT) devices and the rapid advances in the field of deep learning, there is a growing interest in pushing deep learning computations, conventionally handled by the cloud, to the edge of the network to deliver faster responses to end users, reduce bandwidth consumption to the cloud, and address privacy concerns. However, to fully realize deep learning at the edge, two main challenges still need to be addressed: (i) how to meet the high resource requirements of deep learning on resource-constrained devices, and (ii) how to leverage the availability of multiple streams of spatially correlated data, to increase the effectiveness of deep learning and improve application-level performance. To address the above challenges, we explore collaborative inference at the edge, in which edge nodes and end devices share correlated data and the inference computational burden by leveraging different ways to split computation and fuse data. Besides traditional centralized and distributed schemes for edge-end device collaborative inference, we introduce selective schemes that decrease bandwidth resource consumption by effectively reducing data redundancy. As a reference scenario, we focus on multi-view classification in a networked system in which sensing nodes can capture overlapping fields of view. The proposed schemes are compared in terms of accuracy, computational expenditure at the nodes, communication overhead, inference latency, robustness, and noise sensitivity. Experimental results highlight that selective collaborative schemes can achieve different trade-offs between the above performance metrics, with some of them bringing substantial communication savings (from 18% to 74% of the transmitted data with respect to centralized inference) while still keeping the inference accuracy well above 90%.
多视角分类的边缘设备协同计算
受物联网(IoT)设备激增和深度学习领域快速发展的推动,人们对将传统上由云处理的深度学习计算推向网络边缘以向终端用户提供更快响应、减少云带宽消耗和解决隐私问题的兴趣与日俱增。然而,要在边缘充分实现深度学习,仍需应对两大挑战:(i)如何在资源受限的设备上满足深度学习的高资源要求;(ii)如何利用空间相关数据的多流可用性,提高深度学习的有效性并改善应用级性能。为了应对上述挑战,我们探索了边缘协作推理,在这种推理中,边缘节点和终端设备通过利用不同的计算分割和数据融合方式来分担相关数据和推理计算负担。除了用于边缘-终端设备协作推理的传统集中式和分布式方案外,我们还引入了选择性方案,通过有效减少数据冗余来降低带宽资源消耗。作为参考方案,我们重点研究了网络系统中的多视角分类,在该系统中,传感节点可以捕捉重叠的视场。我们从准确性、节点计算支出、通信开销、推理延迟、鲁棒性和噪声敏感性等方面对所提出的方案进行了比较。实验结果表明,选择性协作方案可以在上述性能指标之间实现不同的权衡,其中一些方案可以节省大量通信费用(与集中推理相比,节省了 18% 到 74% 的传输数据),同时仍能保持远高于 90% 的推理准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信