Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks","authors":"","doi":"10.1016/j.chaos.2024.115620","DOIUrl":null,"url":null,"abstract":"<div><div>This exhaustive study entails fractional processing of the unified chaotic Lorenz-Lü-Chen attractors using machine learning expedition with Levenberg-Marquardt optimized deep nonlinear autoregressive exogenous neural networks (NARX-NNs-LM). The fractional Lorenz-Lü-Chen attractors (FLLCA) system is unified by three Caputo-based fractional differential equations reflecting Lorenz, Lü, Chen attractors exacted by the single control parameter. The Fractional Adams-Bashforth-Moulton predictor-corrector method is efficaciously employed for the FLLCA models for different variation of fractional orders to generate synthetic datasets for temporal anticipation and processing. Acquired datasets of FLLCA systems were arbitrarily split into a training, validation and test sets for the execution of nonlinear autoregressive exogenous neural networks optimized sequentially using the Levenberg-Marquardt algorithm. This refined NARX-NNs-LM strategy is validated across the reference numerical solutions via scrutiny on mean square error (MSE) convergence graphs, error histograms, regression indices, error autocorrelations, error input autocorrelations and time series response on exhaustive experimentation study on FLLCA systems. The predictive strength of the NARX-NNs-LM strategy is analyzed by means of step-ahead and multistep ahead predictors. Diminutive error metrics on sundry FLLCA scenarios reflect the expert utilization of NARX-NNs-LM for the precise examination, anticipation and forecasting of nonlinear chaotic fractional attractors.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792401172X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This exhaustive study entails fractional processing of the unified chaotic Lorenz-Lü-Chen attractors using machine learning expedition with Levenberg-Marquardt optimized deep nonlinear autoregressive exogenous neural networks (NARX-NNs-LM). The fractional Lorenz-Lü-Chen attractors (FLLCA) system is unified by three Caputo-based fractional differential equations reflecting Lorenz, Lü, Chen attractors exacted by the single control parameter. The Fractional Adams-Bashforth-Moulton predictor-corrector method is efficaciously employed for the FLLCA models for different variation of fractional orders to generate synthetic datasets for temporal anticipation and processing. Acquired datasets of FLLCA systems were arbitrarily split into a training, validation and test sets for the execution of nonlinear autoregressive exogenous neural networks optimized sequentially using the Levenberg-Marquardt algorithm. This refined NARX-NNs-LM strategy is validated across the reference numerical solutions via scrutiny on mean square error (MSE) convergence graphs, error histograms, regression indices, error autocorrelations, error input autocorrelations and time series response on exhaustive experimentation study on FLLCA systems. The predictive strength of the NARX-NNs-LM strategy is analyzed by means of step-ahead and multistep ahead predictors. Diminutive error metrics on sundry FLLCA scenarios reflect the expert utilization of NARX-NNs-LM for the precise examination, anticipation and forecasting of nonlinear chaotic fractional attractors.
非线性混沌 Lorenz-Lü-Chen 分数阶动力学:利用深度自回归外源神经网络的新型机器学习探险
这项详尽的研究涉及使用 Levenberg-Marquardt 优化的深度非线性自回归外源神经网络(NARX-NNs-LM)进行机器学习考察,对统一的混沌洛伦兹-吕-陈吸引子进行分数处理。分数洛伦兹-吕-陈吸引子(FLLCA)系统由三个基于卡普托的分数微分方程统一而成,反映了由单一控制参数精确控制的洛伦兹、吕、陈吸引子。分式亚当斯-巴什福斯-穆尔顿预测器-校正器方法被有效地用于不同分式阶数变化的 FLLCA 模型,以生成用于时间预测和处理的合成数据集。获得的 FLLCA 系统数据集被任意分成训练集、验证集和测试集,用于执行使用 Levenberg-Marquardt 算法依次优化的非线性自回归外源神经网络。在对 FLLCA 系统进行的详尽实验研究中,通过对均方误差(MSE)收敛图、误差直方图、回归指数、误差自相关性、误差输入自相关性和时间序列响应的审查,在参考数值解中验证了这一改进的 NARX-NNs-LM 策略。NARX-NNs-LM 策略的预测强度通过超前和多步超前预测器进行了分析。各种 FLLCA 情景下的微小误差指标反映了 NARX-NNs-LM 在非线性混沌分数吸引子的精确检查、预测和预报方面的专业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信