Driving a Josephson Traveling Wave Parametric Amplifier into chaos: Effects of a non-sinusoidal current–phase relation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Claudio Guarcello , Carlo Barone , Giovanni Carapella , Veronica Granata , Giovanni Filatrella , Andrea Giachero , Sergio Pagano
{"title":"Driving a Josephson Traveling Wave Parametric Amplifier into chaos: Effects of a non-sinusoidal current–phase relation","authors":"Claudio Guarcello ,&nbsp;Carlo Barone ,&nbsp;Giovanni Carapella ,&nbsp;Veronica Granata ,&nbsp;Giovanni Filatrella ,&nbsp;Andrea Giachero ,&nbsp;Sergio Pagano","doi":"10.1016/j.chaos.2024.115598","DOIUrl":null,"url":null,"abstract":"<div><div>We tackled the numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, with a focus on the pathways leading to chaotic behavior. By tuning the working conditions, we explore the broad spectrum of dynamical regimes accessible to JTWPAs, delineating the conditions under which transition to chaos occurs. Furthermore, we extend our investigation to junctions characterized by a non-sinusoidal current phase relation (CPR) and explore the consequences on the amplifier’s performance. Through the study of gain characteristics, Poincaré sections, and Fourier spectra, we provide an in-depth understanding of how CPR nonlinearity and nonsinusoidality influence the operational effectiveness and stability of JTWPAs. This investigation offers insights into optimizing the device for enhanced performance and robustness against chaotic disruptions, in order to establish a framework for predicting and controlling JTWPA behavior in practical applications. In fact, we identify the regions in the parameter space where the input signal is maximally amplified without excessive noise or undesired harmonics. This effort paves the way for the development of devices with tailored dynamic responses and for advancements in quantum computing and precision measurement technologies, where stability and high fidelity are of paramount importance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011500","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We tackled the numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, with a focus on the pathways leading to chaotic behavior. By tuning the working conditions, we explore the broad spectrum of dynamical regimes accessible to JTWPAs, delineating the conditions under which transition to chaos occurs. Furthermore, we extend our investigation to junctions characterized by a non-sinusoidal current phase relation (CPR) and explore the consequences on the amplifier’s performance. Through the study of gain characteristics, Poincaré sections, and Fourier spectra, we provide an in-depth understanding of how CPR nonlinearity and nonsinusoidality influence the operational effectiveness and stability of JTWPAs. This investigation offers insights into optimizing the device for enhanced performance and robustness against chaotic disruptions, in order to establish a framework for predicting and controlling JTWPA behavior in practical applications. In fact, we identify the regions in the parameter space where the input signal is maximally amplified without excessive noise or undesired harmonics. This effort paves the way for the development of devices with tailored dynamic responses and for advancements in quantum computing and precision measurement technologies, where stability and high fidelity are of paramount importance.
驱动约瑟夫森行波参量放大器陷入混沌:非正弦电流相位关系的影响
我们通过改变驱动参数,对约瑟夫森行波参量放大器(JTWPA)的动态响应进行了数值分析,重点研究了导致混沌行为的途径。通过调整工作条件,我们探索了 JTWPA 所能达到的广泛动态范围,划定了向混沌过渡的条件。此外,我们还将研究扩展到以非正弦电流相位关系(CPR)为特征的结,并探索其对放大器性能的影响。通过对增益特性、Poincaré 截面和傅立叶光谱的研究,我们深入了解了 CPR 非线性和非正弦性如何影响 JTWPA 的工作效率和稳定性。这项研究为优化设备以提高性能和对混乱干扰的鲁棒性提供了见解,从而为预测和控制 JTWPA 在实际应用中的行为建立了一个框架。事实上,我们确定了参数空间中的区域,在这些区域中,输入信号被最大限度地放大,而不会产生过多的噪声或不想要的谐波。这项工作为开发具有定制动态响应的设备以及量子计算和精密测量技术的进步铺平了道路,在这些领域,稳定性和高保真性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信