Adaptive dynamic event-triggered asymptotic control for uncertain nonlinear systems

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Adaptive dynamic event-triggered asymptotic control for uncertain nonlinear systems","authors":"","doi":"10.1016/j.chaos.2024.115597","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an adaptive dynamic event-triggered asymptotic control method for uncertain strict-feedback nonlinear systems with mismatched uncertainties. A dynamic variable is introduced into event-triggered schedule to achieve dynamically regulate the threshold parameter. Meanwhile, a useful Lemma about the dynamic threshold parameter is given to guarantee the availability. Moreover, tuning function technique is used in the backstepping iterative design procedure to address mismatched uncertainties. Adaptive technique is employed to estimate the unknown parameter, then contributing to asymptotic control purpose. It is proven that the closed-loop systems by applying the designed scheme is asymptotic stable and without Zeno behavior. Simulation results and comparative analysis showcase the efficacy of the derived method.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011494","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an adaptive dynamic event-triggered asymptotic control method for uncertain strict-feedback nonlinear systems with mismatched uncertainties. A dynamic variable is introduced into event-triggered schedule to achieve dynamically regulate the threshold parameter. Meanwhile, a useful Lemma about the dynamic threshold parameter is given to guarantee the availability. Moreover, tuning function technique is used in the backstepping iterative design procedure to address mismatched uncertainties. Adaptive technique is employed to estimate the unknown parameter, then contributing to asymptotic control purpose. It is proven that the closed-loop systems by applying the designed scheme is asymptotic stable and without Zeno behavior. Simulation results and comparative analysis showcase the efficacy of the derived method.
不确定非线性系统的自适应动态事件触发渐近控制
本文针对具有不匹配不确定性的不确定严格反馈非线性系统提出了一种自适应动态事件触发渐近控制方法。在事件触发时间表中引入了一个动态变量,以实现对阈值参数的动态调节。同时,给出了一个关于动态阈值参数的有用定理,以保证其可用性。此外,在反步态迭代设计程序中使用了调整函数技术来解决不匹配的不确定性。采用自适应技术来估计未知参数,从而达到渐近控制的目的。事实证明,采用所设计方案的闭环系统是渐近稳定的,没有 Zeno 行为。仿真结果和对比分析展示了衍生方法的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信