Ratchet current and scaling properties in a nontwist mapping

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Ratchet current and scaling properties in a nontwist mapping","authors":"","doi":"10.1016/j.chaos.2024.115614","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the transport of particles in the chaotic component of phase space for a two-dimensional, area-preserving nontwist map. The survival probability for particles within the chaotic sea is described by an exponential decay for regions in phase space predominantly chaotic and it is scaling invariant in this case. Alternatively, when considering mixed chaotic and regular regions, there is a deviation from the exponential decay, characterized by a power law tail for long times, a signature of the stickiness effect. Furthermore, due to the asymmetry of the chaotic component of phase space with respect to the line <span><math><mrow><mi>I</mi><mo>=</mo><mn>0</mn></mrow></math></span>, there is an unbalanced stickiness that generates a ratchet current in phase space. Finally, we perform a phenomenological description of the diffusion of chaotic particles by identifying three scaling hypotheses, and obtaining the critical exponents via extensive numerical simulations.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011664","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the transport of particles in the chaotic component of phase space for a two-dimensional, area-preserving nontwist map. The survival probability for particles within the chaotic sea is described by an exponential decay for regions in phase space predominantly chaotic and it is scaling invariant in this case. Alternatively, when considering mixed chaotic and regular regions, there is a deviation from the exponential decay, characterized by a power law tail for long times, a signature of the stickiness effect. Furthermore, due to the asymmetry of the chaotic component of phase space with respect to the line I=0, there is an unbalanced stickiness that generates a ratchet current in phase space. Finally, we perform a phenomenological description of the diffusion of chaotic particles by identifying three scaling hypotheses, and obtaining the critical exponents via extensive numerical simulations.
非扭曲映射中的棘轮电流和缩放特性
我们研究了粒子在二维面积保留非扭曲图相空间混沌部分的传输。对于相空间中以混沌为主的区域,粒子在混沌海中的存活概率用指数衰减来描述,并且在这种情况下它是缩放不变的。或者,当考虑混沌和规则混合区域时,指数衰减会出现偏差,其特征是在较长时间内出现幂律尾,这是粘性效应的特征。此外,由于相空间的混沌分量与 I=0 线不对称,存在不平衡的粘性,从而在相空间产生棘轮电流。最后,我们通过确定三个缩放假设,对混沌粒子的扩散进行了现象学描述,并通过大量数值模拟获得了临界指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信