Design of chaotic Young's double slit experiment optimization heuristics for identification of nonlinear muscle model with key term separation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Khizer Mehmood , Zeshan Aslam Khan , Naveed Ishtiaq Chaudhary , Khalid Mehmood Cheema , Bazla Siddiqui , Muhammad Asif Zahoor Raja
{"title":"Design of chaotic Young's double slit experiment optimization heuristics for identification of nonlinear muscle model with key term separation","authors":"Khizer Mehmood ,&nbsp;Zeshan Aslam Khan ,&nbsp;Naveed Ishtiaq Chaudhary ,&nbsp;Khalid Mehmood Cheema ,&nbsp;Bazla Siddiqui ,&nbsp;Muhammad Asif Zahoor Raja","doi":"10.1016/j.chaos.2024.115636","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a novel variant of Young's double slit experiment (YDSE) optimizer is introduced with improved performance by integrating ten different chaotic maps. The integration is performed in three different ways and thirty chaotic variants of YDSE optimizer are proposed. The analysis is performed on mathematical and CEC benchmark functions having unimodal and multimodal features. It is further applied to electrically stimulated muscle model which is generalization of input nonlinear Hammerstein controlled autoregressive model with key term separation used for patients with spinal cord injury. The results indicates that chaotic maps enhance the performance of YDSE optimizer. More specifically integration of Gauss map in both exploration and exploitation mechanisms (M3CYDSE3) is most effective than other variants. Detailed convergence analysis, statistical executions, complexity analysis and Freidman test show that M3CYDSE3 achieves best performance against artificial electric field algorithm (AEFA), arithmetic optimization algorithm (AOA), propagation search algorithm (PSA), particle swarm optimization (PSO), sine cosine algorithm (SCA), and YDSE optimizer.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011883","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a novel variant of Young's double slit experiment (YDSE) optimizer is introduced with improved performance by integrating ten different chaotic maps. The integration is performed in three different ways and thirty chaotic variants of YDSE optimizer are proposed. The analysis is performed on mathematical and CEC benchmark functions having unimodal and multimodal features. It is further applied to electrically stimulated muscle model which is generalization of input nonlinear Hammerstein controlled autoregressive model with key term separation used for patients with spinal cord injury. The results indicates that chaotic maps enhance the performance of YDSE optimizer. More specifically integration of Gauss map in both exploration and exploitation mechanisms (M3CYDSE3) is most effective than other variants. Detailed convergence analysis, statistical executions, complexity analysis and Freidman test show that M3CYDSE3 achieves best performance against artificial electric field algorithm (AEFA), arithmetic optimization algorithm (AOA), propagation search algorithm (PSA), particle swarm optimization (PSO), sine cosine algorithm (SCA), and YDSE optimizer.
设计混沌杨氏双缝实验优化启发式,用于识别关键项分离的非线性肌肉模型
在这项工作中,通过整合十种不同的混沌图,引入了杨氏双缝实验(YDSE)优化器的新型变体,其性能得到了提高。集成以三种不同的方式进行,并提出了 YDSE 优化器的三十种混沌变体。对具有单模态和多模态特征的数学和 CEC 基准函数进行了分析。它还被进一步应用于电刺激肌肉模型,该模型是输入非线性哈默斯坦控制自回归模型的一般化,具有用于脊髓损伤患者的关键项分离。结果表明,混沌图增强了 YDSE 优化器的性能。更具体地说,在探索和利用机制中整合高斯图(M3CYDSE3)比其他变体更有效。详细的收敛分析、统计执行、复杂性分析和弗里德曼测试表明,M3CYDSE3在与人工电场算法(AEFA)、算术优化算法(AOA)、传播搜索算法(PSA)、粒子群优化算法(PSO)、正弦余弦算法(SCA)和YDSE优化器的比较中取得了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信