Trustworthy fog: A reputation-based consensus method for IoT with blockchain and fog computing

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
{"title":"Trustworthy fog: A reputation-based consensus method for IoT with blockchain and fog computing","authors":"","doi":"10.1016/j.compeleceng.2024.109749","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes Trustworthy Fog, a novel reputation-based consensus method for Internet of Things (IoT) systems that leverages blockchain and fog computing technologies. By integrating fog computing’s near-end data processing capabilities with blockchain’s immutability and transparency, the proposed method addresses challenges related to latency, device load, and the adaptability of traditional consensus algorithms to resource-constrained environments. A reputation management module evaluates device and node behaviors, facilitating rapid authentication and consensus processes. Distinct reputation calculation schemes for physical devices and fog nodes aim to prevent reputation centralization through periodic resets of reputation values. Based on these values, a lightweight consensus algorithm balances computational capacity and reputation to select leader nodes. Simulations demonstrate the method’s effectiveness in dynamically reflecting device trustworthiness and ensuring fair consensus participation. This research advances IoT blockchain technology, offering a robust solution for the scalability and security challenges inherent in IoT networks.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006761","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes Trustworthy Fog, a novel reputation-based consensus method for Internet of Things (IoT) systems that leverages blockchain and fog computing technologies. By integrating fog computing’s near-end data processing capabilities with blockchain’s immutability and transparency, the proposed method addresses challenges related to latency, device load, and the adaptability of traditional consensus algorithms to resource-constrained environments. A reputation management module evaluates device and node behaviors, facilitating rapid authentication and consensus processes. Distinct reputation calculation schemes for physical devices and fog nodes aim to prevent reputation centralization through periodic resets of reputation values. Based on these values, a lightweight consensus algorithm balances computational capacity and reputation to select leader nodes. Simulations demonstrate the method’s effectiveness in dynamically reflecting device trustworthiness and ensuring fair consensus participation. This research advances IoT blockchain technology, offering a robust solution for the scalability and security challenges inherent in IoT networks.
可信的雾:基于区块链和雾计算的物联网信誉共识方法
本文利用区块链和雾计算技术,为物联网(IoT)系统提出了一种基于信誉的新型共识方法--可信雾(Trustworthy Fog)。通过将雾计算的近端数据处理能力与区块链的不变性和透明性相结合,该方法解决了与延迟、设备负载以及传统共识算法对资源受限环境的适应性有关的挑战。信誉管理模块可评估设备和节点的行为,促进快速认证和共识流程。针对物理设备和雾节点的不同信誉计算方案旨在通过定期重置信誉值来防止信誉集中化。基于这些声誉值,一种轻量级共识算法会平衡计算能力和声誉,以选择领导节点。仿真证明了该方法在动态反映设备可信度和确保公平参与共识方面的有效性。这项研究推动了物联网区块链技术的发展,为应对物联网网络固有的可扩展性和安全性挑战提供了一个强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信