{"title":"A simple and efficient solution scheme of coupling method between phase field regularized cohesive zone model and linear elastic model for fracture","authors":"Yuanfeng Yu , Chi Hou , Timon Rabczuk , Meiying Zhao","doi":"10.1016/j.tafmec.2024.104696","DOIUrl":null,"url":null,"abstract":"<div><div>To improve computational efficiency, in this work, a coupling scheme between a phase field regularized cohesive zone model and a linear elastic model is proposed. According to the crack pattern, the entire solution domain is partitioned into different subregions, the phase field regularized cohesive zone model is applied only in the subregion where the crack appears, the linear elastic model is considered in the remaining region, combining the characteristics and advantages of the two models to improve computational efficiency. Secondly, in the light of the similarity between the phase field model governing equation and the heat transfer equation, the analogous relationships for different coefficients are given, and the coupling model is implemented using an equivalent thermal coupling framework, avoiding post-processing of complex element. Finally, the validity of the presented model is verified by some typical examples. The results indicate that the coupling model can be used to study the complex fracture process under different failure modes. Its load displacement response, energy characteristic and crack pattern are in line with that of the pure phase field regularized cohesive zone model and are in agreement with experiment and literature results. Meanwhile, compared to pure phase field model, the proposed coupling model consumes lower time cost.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104696"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004464","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To improve computational efficiency, in this work, a coupling scheme between a phase field regularized cohesive zone model and a linear elastic model is proposed. According to the crack pattern, the entire solution domain is partitioned into different subregions, the phase field regularized cohesive zone model is applied only in the subregion where the crack appears, the linear elastic model is considered in the remaining region, combining the characteristics and advantages of the two models to improve computational efficiency. Secondly, in the light of the similarity between the phase field model governing equation and the heat transfer equation, the analogous relationships for different coefficients are given, and the coupling model is implemented using an equivalent thermal coupling framework, avoiding post-processing of complex element. Finally, the validity of the presented model is verified by some typical examples. The results indicate that the coupling model can be used to study the complex fracture process under different failure modes. Its load displacement response, energy characteristic and crack pattern are in line with that of the pure phase field regularized cohesive zone model and are in agreement with experiment and literature results. Meanwhile, compared to pure phase field model, the proposed coupling model consumes lower time cost.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.