Kacper Derlatka , Maciej Manna , Oleksii Bulenok , David Zwicker , Sylwester Arabas
{"title":"Numba-MPI v1.0: Enabling MPI communication within Numba/LLVM JIT-compiled Python code","authors":"Kacper Derlatka , Maciej Manna , Oleksii Bulenok , David Zwicker , Sylwester Arabas","doi":"10.1016/j.softx.2024.101897","DOIUrl":null,"url":null,"abstract":"<div><div>The <span>numba-mpi</span> package offers access to the Message Passing Interface (MPI) routines from Python code that uses the Numba just-in-time (JIT) compiler. As a result, high-performance and multi-threaded Python code may utilize MPI communication facilities without leaving the JIT-compiled code blocks, which is not possible with the <span>mpi4py</span> package, a higher-level Python interface to MPI. For debugging or code-coverage analysis purposes, <span>numba-mpi</span> retains full functionality of the code even if the JIT compilation is disabled. The <span>numba-mpi</span> API constitutes a thin wrapper around the C API of MPI and is built around Numpy arrays including handling of non-contiguous views over array slices. Project development is hosted at GitHub leveraging the <span>mpi4py/setup-mpi</span> workflow enabling continuous integration tests on Linux (<span>MPICH</span>, <span>OpenMPI</span> & <span>Intel MPI</span>), macOS (<span>MPICH</span> & <span>OpenMPI</span>) and Windows (<span>MS MPI</span>). The paper covers an overview of the package features, architecture and performance. As of v1.0, the following MPI routines are exposed and covered by unit tests: <span>size</span>/<span>rank</span>, <span>[i]send</span>/<span>[i]recv</span>, <span>wait[all|any]</span>, <span>test[all|any]</span>, <span>allreduce</span>, <span>bcast</span>, <span>barrier</span>, <span>scatter/[all]gather</span> & <span>wtime</span>. The package is implemented in pure Python and depends on <span>numpy</span>, <span>numba</span> and <span>mpi4py</span> (the latter used at initialization and as a source of utility routines only). The performance advantage of using <span>numba-mpi</span> compared to <span>mpi4py</span> is depicted with a simple example, with entirety of the code included in listings discussed in the text. Application of <span>numba-mpi</span> for handling domain decomposition in numerical solvers for partial differential equations is presented using two external packages that depend on <span>numba-mpi</span>: <span>py-pde</span> and <span>PyMPDATA-MPI</span>.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101897"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235271102400267X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The numba-mpi package offers access to the Message Passing Interface (MPI) routines from Python code that uses the Numba just-in-time (JIT) compiler. As a result, high-performance and multi-threaded Python code may utilize MPI communication facilities without leaving the JIT-compiled code blocks, which is not possible with the mpi4py package, a higher-level Python interface to MPI. For debugging or code-coverage analysis purposes, numba-mpi retains full functionality of the code even if the JIT compilation is disabled. The numba-mpi API constitutes a thin wrapper around the C API of MPI and is built around Numpy arrays including handling of non-contiguous views over array slices. Project development is hosted at GitHub leveraging the mpi4py/setup-mpi workflow enabling continuous integration tests on Linux (MPICH, OpenMPI & Intel MPI), macOS (MPICH & OpenMPI) and Windows (MS MPI). The paper covers an overview of the package features, architecture and performance. As of v1.0, the following MPI routines are exposed and covered by unit tests: size/rank, [i]send/[i]recv, wait[all|any], test[all|any], allreduce, bcast, barrier, scatter/[all]gather & wtime. The package is implemented in pure Python and depends on numpy, numba and mpi4py (the latter used at initialization and as a source of utility routines only). The performance advantage of using numba-mpi compared to mpi4py is depicted with a simple example, with entirety of the code included in listings discussed in the text. Application of numba-mpi for handling domain decomposition in numerical solvers for partial differential equations is presented using two external packages that depend on numba-mpi: py-pde and PyMPDATA-MPI.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.