Pu He , Jun-Hong Chen , Chen-Zi Zhang , Zi-Yan Yu , Ming-Yang Wang , Jun-Yu Chen , Jia-Le Song , Yu-Tong Mu , Kun-Ying Gong , Wen-Quan Tao
{"title":"Optimization of modeling and temperature control of air-cooled PEMFC based on TLBO-DE","authors":"Pu He , Jun-Hong Chen , Chen-Zi Zhang , Zi-Yan Yu , Ming-Yang Wang , Jun-Yu Chen , Jia-Le Song , Yu-Tong Mu , Kun-Ying Gong , Wen-Quan Tao","doi":"10.1016/j.egyai.2024.100430","DOIUrl":null,"url":null,"abstract":"<div><div>The temperature control of the air-cooled proton exchange membrane fuel cell (PEMFC) is important for effective and safe operation. To develop a practical and precise controller, this study combines the Radial Basis Function (RBF) neural network with Back Propagation neural network adaptive Proportion Integration Differentiation (BP-PID), and then a metaheuristic algorithm is used to optimize the parameters of RBF-BP-PID for further improvement in temperature control. First, an air-cooled PEMFC system model is established. To match the simulation data with the experimental data, Teaching Learning Based Optimization–Differential Evolution (TLBO-DE) is proposed to identify the unknown parameters, and the maximum relative error is <3.5 %. Second, RBF neural network is introduced to identify the stack temperature and provide the accurate <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> for BP-PID, which solves the problem of using sign function sgn(<span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>) to approximate the <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> in BP-PID. Regarding the temperature control of air-cooled PEMFC, several controllers are compared, including PID, Fuzzy-PID, BP-PID and RBF-BP-PID. The proposed RBF-BP-PID achieves the best control effect, which reduces the integrated time and absolute error (ITAE) by 3.4 % and 15.8 % based on BP-PID in the startup and steady phases, respectively. Since the <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> provided by RBF changes softly and continuously during the control process, the parameters self-tuning ability of RBF-BP-PID is better than BP-PID. Third, to improve the control effect of RBF-BP-PID further, TLBO-DE is adopted to optimize the parameters of RBF neural network and BP neural network.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100430"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682400096X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The temperature control of the air-cooled proton exchange membrane fuel cell (PEMFC) is important for effective and safe operation. To develop a practical and precise controller, this study combines the Radial Basis Function (RBF) neural network with Back Propagation neural network adaptive Proportion Integration Differentiation (BP-PID), and then a metaheuristic algorithm is used to optimize the parameters of RBF-BP-PID for further improvement in temperature control. First, an air-cooled PEMFC system model is established. To match the simulation data with the experimental data, Teaching Learning Based Optimization–Differential Evolution (TLBO-DE) is proposed to identify the unknown parameters, and the maximum relative error is <3.5 %. Second, RBF neural network is introduced to identify the stack temperature and provide the accurate for BP-PID, which solves the problem of using sign function sgn() to approximate the in BP-PID. Regarding the temperature control of air-cooled PEMFC, several controllers are compared, including PID, Fuzzy-PID, BP-PID and RBF-BP-PID. The proposed RBF-BP-PID achieves the best control effect, which reduces the integrated time and absolute error (ITAE) by 3.4 % and 15.8 % based on BP-PID in the startup and steady phases, respectively. Since the provided by RBF changes softly and continuously during the control process, the parameters self-tuning ability of RBF-BP-PID is better than BP-PID. Third, to improve the control effect of RBF-BP-PID further, TLBO-DE is adopted to optimize the parameters of RBF neural network and BP neural network.