Solution infiltrated lanthanum nickelate–GDC composite cathode via flash-light sintering for intermediate temperature solid oxide fuel cells

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Junghum Park , Hojae Lee , Miju Ku , Jisung Yoon , Young-Beom Kim
{"title":"Solution infiltrated lanthanum nickelate–GDC composite cathode via flash-light sintering for intermediate temperature solid oxide fuel cells","authors":"Junghum Park ,&nbsp;Hojae Lee ,&nbsp;Miju Ku ,&nbsp;Jisung Yoon ,&nbsp;Young-Beom Kim","doi":"10.1016/j.jeurceramsoc.2024.116937","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide fuel cells (SOFCs) require high operating temperatures to minimize the oxygen reduction reaction resistance at cathode and increase the ionic conductivity of oxygen. However, at high operating temperatures, their stability during long-term operation degrades because of material deterioration and the mutual chemical reactions occurring at the interfaces. Herein, an electrode–electrolyte composite is fabricated by solution infiltration of lanthanum nickelate (LNO) electrode material into a GDC electrolyte layer to ensure more reaction sites compared with the conventional powder mixing of the electrode and electrolyte material. Further, the conventional thermal sintering process is replaced with the flash-light sintering process. Thus, the performance of the LNO–GDC cathode cell manufactured by flash-light sintering improves owing to suppression of grain growth of the infiltrated LNO particles. The microstructures of the infiltrated solution and composite layer of the electrolyte material are analyzed using field-emission scanning electron microscopy, and the crystallinity of the LNO nanoparticles is analyzed using high-resolution transmission electron microscopy. A maximum power density of 1.1 W/cm<sup>2</sup> is achieved, an improvement of 58 % over the LSCF cell without infiltration at 750 ℃. This study is expected to contribute to the commercialization of SOFCs by replacing conventional thermal sintering.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide fuel cells (SOFCs) require high operating temperatures to minimize the oxygen reduction reaction resistance at cathode and increase the ionic conductivity of oxygen. However, at high operating temperatures, their stability during long-term operation degrades because of material deterioration and the mutual chemical reactions occurring at the interfaces. Herein, an electrode–electrolyte composite is fabricated by solution infiltration of lanthanum nickelate (LNO) electrode material into a GDC electrolyte layer to ensure more reaction sites compared with the conventional powder mixing of the electrode and electrolyte material. Further, the conventional thermal sintering process is replaced with the flash-light sintering process. Thus, the performance of the LNO–GDC cathode cell manufactured by flash-light sintering improves owing to suppression of grain growth of the infiltrated LNO particles. The microstructures of the infiltrated solution and composite layer of the electrolyte material are analyzed using field-emission scanning electron microscopy, and the crystallinity of the LNO nanoparticles is analyzed using high-resolution transmission electron microscopy. A maximum power density of 1.1 W/cm2 is achieved, an improvement of 58 % over the LSCF cell without infiltration at 750 ℃. This study is expected to contribute to the commercialization of SOFCs by replacing conventional thermal sintering.
用于中温固体氧化物燃料电池的闪速烧结溶液浸润镍酸镧-GDC 复合阴极
固体氧化物燃料电池(SOFC)需要较高的工作温度,以尽量减少阴极的氧还原反应阻力并提高氧的离子传导性。然而,在高温条件下,由于材料劣化和界面上发生的相互化学反应,其长期运行的稳定性会下降。与传统的电极和电解质材料的粉末混合相比,本文通过将镍酸镧(LNO)电极材料溶液渗入 GDC 电解质层来制造电极-电解质复合材料,以确保更多的反应位点。此外,传统的热烧结工艺被闪光烧结工艺所取代。因此,由于浸润的 LNO 颗粒的晶粒生长受到抑制,采用闪光烧结工艺制造的 LNO-GDC 阴极电池的性能得到了改善。利用场发射扫描电子显微镜分析了浸润溶液和电解质材料复合层的微观结构,并利用高分辨率透射电子显微镜分析了 LNO 纳米颗粒的结晶度。在 750 ℃ 的条件下,最大功率密度达到 1.1 W/cm2,比没有渗入的 LSCF 电池提高了 58%。这项研究有望取代传统的热烧结技术,为 SOFC 的商业化做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信