Álvaro Sández-Gómez, Angel L. Ortiz, Pedro Miranda
{"title":"Production of complex microchanneled parts of ZrB2-MoSi2 ultra-high temperature ceramics by freeze casting and pressureless spark plasma sintering","authors":"Álvaro Sández-Gómez, Angel L. Ortiz, Pedro Miranda","doi":"10.1016/j.jeurceramsoc.2024.116966","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach for manufacturing complex parts of ultra-high-temperature ceramics (UHTCs) is proposed, combining freeze casting with pressureless spark plasma sintering (SPS). With the aid of MoSi<sub>2</sub> sintering additive (15 vol% or more), this combination enables the production of fully dense ZrB<sub>2</sub>-based UHTC parts at 1900 °C. Producing complex-shaped samples including an intricate network of internal microchannels seems feasible, by using additive manufacturing techniques in the production of templates for the external silicone mould and the internal microchannel network to be used during the freeze casting process. Although defects are prone to occur either during freeze drying, due to thermal stresses arising from the expansion mismatch between the internal resin template and the ceramic preform, or during the resin burn-out or SPS cycles, the resulting samples exhibited a fully dense microstructure and similar hardness (17 ± 1 GPa) as the bulk material. Thus, the proposed approach shows promise in the production of arbitrarily complex-shaped UHTC parts that may find application in numerous industrial sectors including aerospace, aviation, and energy generation and storage.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 2","pages":"Article 116966"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008392","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach for manufacturing complex parts of ultra-high-temperature ceramics (UHTCs) is proposed, combining freeze casting with pressureless spark plasma sintering (SPS). With the aid of MoSi2 sintering additive (15 vol% or more), this combination enables the production of fully dense ZrB2-based UHTC parts at 1900 °C. Producing complex-shaped samples including an intricate network of internal microchannels seems feasible, by using additive manufacturing techniques in the production of templates for the external silicone mould and the internal microchannel network to be used during the freeze casting process. Although defects are prone to occur either during freeze drying, due to thermal stresses arising from the expansion mismatch between the internal resin template and the ceramic preform, or during the resin burn-out or SPS cycles, the resulting samples exhibited a fully dense microstructure and similar hardness (17 ± 1 GPa) as the bulk material. Thus, the proposed approach shows promise in the production of arbitrarily complex-shaped UHTC parts that may find application in numerous industrial sectors including aerospace, aviation, and energy generation and storage.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.