George Tasios , Vasiliki Louli , Efstathios Skouras , Even Solbraa , Epaminondas Voutsas
{"title":"Thermodynamic modelling of systems involved in natural gas dehydration with triethylene glycol using a group contribution association model","authors":"George Tasios , Vasiliki Louli , Efstathios Skouras , Even Solbraa , Epaminondas Voutsas","doi":"10.1016/j.fluid.2024.114241","DOIUrl":null,"url":null,"abstract":"<div><div>Natural gas (NG) dehydration through absorption into Triethylene Glycol (TEG) is one of the most important applications in the NG industry. The optimal design of the TEG dehydration process requires a deep understanding of the thermodynamic behavior of mixtures containing TEG, water, hydrocarbons, and other compounds present in natural gas. In this work, the recently developed Universal Mixing Rule – Cubic Plus Association (UMR-CPA) group contribution equation of state (EoS) is extended to these systems. UMR-CPA combines the PR-CPA EoS with the UNIFAC group contribution activity coefficient model through the Universal Mixing Rules. Parameters for pure water, TEG and NG components were determined by accurately fitting vapor pressure, density and heat capacity data. For non-associating compounds, the model leads to overall deviations of 1.2 % in vapor pressures and 6.1 % in isobaric heat capacities. Water properties are also quite accurately described, with overall deviations of approximately 0.4 %, 1.2 % and 5.7 % in vapor pressures, liquid densities and isobaric heat capacities, respectively. The model was then applied to mixtures of water and TEG with gases and hydrocarbons by correlating the proper group interaction parameters. Very satisfactory results were obtained for both vapor-liquid and liquid-liquid phase equilibria in these systems, where also an adequate reproduction of the minimum of hydrocarbon solubility in water was noted. Finally, the UMR-CPA EoS was further validated through the prediction of the phase behavior of ternary systems including TEG and/or water and NG compounds. Very good predictions were achieved for the low TEG and water content in the vapor phase of the TEG-H<sub>2</sub>O-CH<sub>4</sub> ternary system, with absolute deviations of around 0.05 and 23.26 ppm, respectively. Overall, the model yields accurate predictions, suggesting its suitability for designing the TEG dehydration process.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114241"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002164","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural gas (NG) dehydration through absorption into Triethylene Glycol (TEG) is one of the most important applications in the NG industry. The optimal design of the TEG dehydration process requires a deep understanding of the thermodynamic behavior of mixtures containing TEG, water, hydrocarbons, and other compounds present in natural gas. In this work, the recently developed Universal Mixing Rule – Cubic Plus Association (UMR-CPA) group contribution equation of state (EoS) is extended to these systems. UMR-CPA combines the PR-CPA EoS with the UNIFAC group contribution activity coefficient model through the Universal Mixing Rules. Parameters for pure water, TEG and NG components were determined by accurately fitting vapor pressure, density and heat capacity data. For non-associating compounds, the model leads to overall deviations of 1.2 % in vapor pressures and 6.1 % in isobaric heat capacities. Water properties are also quite accurately described, with overall deviations of approximately 0.4 %, 1.2 % and 5.7 % in vapor pressures, liquid densities and isobaric heat capacities, respectively. The model was then applied to mixtures of water and TEG with gases and hydrocarbons by correlating the proper group interaction parameters. Very satisfactory results were obtained for both vapor-liquid and liquid-liquid phase equilibria in these systems, where also an adequate reproduction of the minimum of hydrocarbon solubility in water was noted. Finally, the UMR-CPA EoS was further validated through the prediction of the phase behavior of ternary systems including TEG and/or water and NG compounds. Very good predictions were achieved for the low TEG and water content in the vapor phase of the TEG-H2O-CH4 ternary system, with absolute deviations of around 0.05 and 23.26 ppm, respectively. Overall, the model yields accurate predictions, suggesting its suitability for designing the TEG dehydration process.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.