Kinetic modeling of palmitic acid hydrodeoxygenation incorporating phase-equilibria predictions from the GC-PC-SAFT equation of state

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Mariana Afonso Pinto Pedroza , Iuri Soter Viana Segtovich , Mônica Antunes Pereira da Silva
{"title":"Kinetic modeling of palmitic acid hydrodeoxygenation incorporating phase-equilibria predictions from the GC-PC-SAFT equation of state","authors":"Mariana Afonso Pinto Pedroza ,&nbsp;Iuri Soter Viana Segtovich ,&nbsp;Mônica Antunes Pereira da Silva","doi":"10.1016/j.fluid.2024.114236","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigated the phase equilibria and the kinetics of palmitic acid hydrodeoxygenation over Pt/C to produce liquid hydrocarbons as drop-in biofuels. To describe the reaction mixture in detail, the binary interaction parameters of water/hydrogen, water/palmitic acid, water/n-hexadecane, and water/hexadecan-1-ol were estimated for a group contribution model based on the PC-SAFT equation of state using experimental solubility data taken from literature. Kinetic modeling using a power law model based on concentrations, a power law model based on fugacities, and a coupled VLE/power-law model were conducted to evaluate the effects of considering the non-ideality and the phase equilibria of the system. Under the operational conditions studied, the power law model based on concentrations was deemed more suitable to describe the process since it provided a faster implementation and similar outcomes compared to the fugacity-based and the VLE coupled models.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114236"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002115","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigated the phase equilibria and the kinetics of palmitic acid hydrodeoxygenation over Pt/C to produce liquid hydrocarbons as drop-in biofuels. To describe the reaction mixture in detail, the binary interaction parameters of water/hydrogen, water/palmitic acid, water/n-hexadecane, and water/hexadecan-1-ol were estimated for a group contribution model based on the PC-SAFT equation of state using experimental solubility data taken from literature. Kinetic modeling using a power law model based on concentrations, a power law model based on fugacities, and a coupled VLE/power-law model were conducted to evaluate the effects of considering the non-ideality and the phase equilibria of the system. Under the operational conditions studied, the power law model based on concentrations was deemed more suitable to describe the process since it provided a faster implementation and similar outcomes compared to the fugacity-based and the VLE coupled models.
结合 GC-PC-SAFT 状态方程的相平衡预测建立棕榈酸加氢脱氧的动力学模型
在这项工作中,我们研究了棕榈酸在 Pt/C 上加氢脱氧生成液态烃作为滴入式生物燃料的相平衡和动力学。为了详细描述反应混合物,我们根据 PC-SAFT 状态方程,利用文献中的实验溶解度数据,估算了水/氢、水/棕榈酸、水/正十六烷和水/正十六烷-1-醇的二元相互作用参数。使用基于浓度的幂律模型、基于逸度的幂律模型和 VLE/ 幂律耦合模型进行了动力学建模,以评估考虑系统的非理想性和相平衡的影响。在所研究的运行条件下,基于浓度的幂律模型被认为更适合描述过程,因为与基于逸散度的模型和 VLE 耦合模型相比,该模型的实施速度更快,结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信