{"title":"Dynamic analysis of Hashimoto’s Thyroiditis bio-mathematical model using artificial neural network","authors":"Rakesh Kumar , Sudarshan Dhua","doi":"10.1016/j.matcom.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>This article establishes an efficient solution scheme for a mathematical model of Hashimoto’s Thyroiditis (HT) employing artificial neural networks. HT is an auto-immune disorder hostile to the thyroid follicle cells, effectuating hypothyroid or hyperthyroidism. Under this condition, the thyroid-stimulating hormone (TSH) alters incomparably to the free thyroxine (FT4) interrupts the functioning of the hypothalamus-pituitary-thyroid (HPT) axis, implicating the thyroid follicle cells getting destroyed. We primarily focus on utilizing artificial neural network (ANN) to perform numerical simulations for the system of ordinary differential equations describing the dynamics of an existing 4D model of HT. The presented model comprises four time-dependent variables: TSH, FT4, anti-thyroid antibodies (Ab), and size of the thyroid gland (T). We utilize ND-Solver and ANN scheme in the Mathematica software to acquire the computational data and illustrate thus retrieved results with essential performance plots. Further, mean square error has been considered in validating the proposed ANN-based approach accurately. The plot for training and validation loss exhibits the effectiveness of the proposed methodology, and substantiate that the suggested ANN approach is a good fit for the solving the mathematical model of HT.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003902","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article establishes an efficient solution scheme for a mathematical model of Hashimoto’s Thyroiditis (HT) employing artificial neural networks. HT is an auto-immune disorder hostile to the thyroid follicle cells, effectuating hypothyroid or hyperthyroidism. Under this condition, the thyroid-stimulating hormone (TSH) alters incomparably to the free thyroxine (FT4) interrupts the functioning of the hypothalamus-pituitary-thyroid (HPT) axis, implicating the thyroid follicle cells getting destroyed. We primarily focus on utilizing artificial neural network (ANN) to perform numerical simulations for the system of ordinary differential equations describing the dynamics of an existing 4D model of HT. The presented model comprises four time-dependent variables: TSH, FT4, anti-thyroid antibodies (Ab), and size of the thyroid gland (T). We utilize ND-Solver and ANN scheme in the Mathematica software to acquire the computational data and illustrate thus retrieved results with essential performance plots. Further, mean square error has been considered in validating the proposed ANN-based approach accurately. The plot for training and validation loss exhibits the effectiveness of the proposed methodology, and substantiate that the suggested ANN approach is a good fit for the solving the mathematical model of HT.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.