Haiyang Yu , Jianying He , David Didier Morin , Michael Ortiz , Zhiliang Zhang
{"title":"A self-consistent void-based rationale for hydrogen embrittlement","authors":"Haiyang Yu , Jianying He , David Didier Morin , Michael Ortiz , Zhiliang Zhang","doi":"10.1016/j.scriptamat.2024.116403","DOIUrl":null,"url":null,"abstract":"<div><div>Solely based on the failure process of metallic materials containing voids, we propose a straightforward rationale for a self-consistent void-based hydrogen embrittlement (CVHE) predictive framework that effectively captures ductile failure, hydrogen-induced loss of ductility, and most importantly, the ductile-to-brittle transition. While the coupling effect of homogenously distributed secondary voids is well-documented, the rigor of our approach lies in the precise definition of an array of equally sized and spaced secondary voids nucleated aligning with the hydrogen embrittlement mechanisms HEDE, HELP and HESIV, in the ligament between primary voids. The CVHE model can quantitatively predict the full range of embrittlement; it naturally reveals the brittle inter-ligament decohesion associated with an intrinsic lower bound of ductility, when the secondary voids are sufficiently small. Counterintuitively, our results show that ductility reduction accelerates with a decrease in the secondary void volume fraction, and that smaller voids lead to greater embrittlement.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116403"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964622400438X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solely based on the failure process of metallic materials containing voids, we propose a straightforward rationale for a self-consistent void-based hydrogen embrittlement (CVHE) predictive framework that effectively captures ductile failure, hydrogen-induced loss of ductility, and most importantly, the ductile-to-brittle transition. While the coupling effect of homogenously distributed secondary voids is well-documented, the rigor of our approach lies in the precise definition of an array of equally sized and spaced secondary voids nucleated aligning with the hydrogen embrittlement mechanisms HEDE, HELP and HESIV, in the ligament between primary voids. The CVHE model can quantitatively predict the full range of embrittlement; it naturally reveals the brittle inter-ligament decohesion associated with an intrinsic lower bound of ductility, when the secondary voids are sufficiently small. Counterintuitively, our results show that ductility reduction accelerates with a decrease in the secondary void volume fraction, and that smaller voids lead to greater embrittlement.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.