-AI-assisted diagnostic potential of CT in bone oncology and its impact on clinical decision-making for intensive care

IF 3.4 2区 医学 Q2 Medicine
{"title":"-AI-assisted diagnostic potential of CT in bone oncology and its impact on clinical decision-making for intensive care","authors":"","doi":"10.1016/j.jbo.2024.100639","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study evaluates the AI-assisted diagnostic potential of computed tomography (CT) for bone cancer and its influence on patient care during the pre- and post-treatment phases. It compares patient management approaches based on CT severity levels and identifies distinct CT phenotypes linked to disease severity.</div></div><div><h3>Methodology</h3><div>We retrospectively examined 50 patients diagnosed with bone cancer between December 2022 and June 2023. The CT scans were analyzed according to the Radiological Society of North America (RSNA) guidelines. This study was performed using the deep convolutional neutral network (DCNN) model to assist doctors in diagnosing bone tumors through CT scanning. Patients’ management approaches were compared based on the severity levels indicated by CT scans.</div></div><div><h3>Results</h3><div>Fifty patients participated in this study, with a median age of 67.2 years, ranging from 32 to 89 years. Of them, 38 % were female and 62 % were male. In 2022, 19 individuals (13 males and 6 females, ages 32 to 84) were assessed, with a mean age of 59.9 years. In 2023, 31 individuals, aged 54 to 89 with a mean age of 71.6 years, were assessed; among them were 18 men and 13 women. SPECT scans revealed the following key diagnostic features: 85.9 % of patients exhibited bone lesions with ground-glass opacities, 88 % had multipolar involvement, 92.8 % had bilateral involvement, and 92.8 % showed peripheral involvement. The severity scores based on CT scans were significantly higher in patients requiring intensive care, with scores above 14 being more common in this group.</div></div><div><h3>Conclusion</h3><div>Distinct CT findings during the AI-assisted diagnosis and treatment of bone cancer provided prompt and sensitive examination capabilities. Notably, two CT phenotypes emerged, associated with large consolidation patterns and high severity scores, offering crucial insights into disease severity and aiding in clinical decision-making for intensive care requirements. The study underscores the importance of CT in the effective monitoring and management of bone cancer pre- and post-treatment.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study evaluates the AI-assisted diagnostic potential of computed tomography (CT) for bone cancer and its influence on patient care during the pre- and post-treatment phases. It compares patient management approaches based on CT severity levels and identifies distinct CT phenotypes linked to disease severity.

Methodology

We retrospectively examined 50 patients diagnosed with bone cancer between December 2022 and June 2023. The CT scans were analyzed according to the Radiological Society of North America (RSNA) guidelines. This study was performed using the deep convolutional neutral network (DCNN) model to assist doctors in diagnosing bone tumors through CT scanning. Patients’ management approaches were compared based on the severity levels indicated by CT scans.

Results

Fifty patients participated in this study, with a median age of 67.2 years, ranging from 32 to 89 years. Of them, 38 % were female and 62 % were male. In 2022, 19 individuals (13 males and 6 females, ages 32 to 84) were assessed, with a mean age of 59.9 years. In 2023, 31 individuals, aged 54 to 89 with a mean age of 71.6 years, were assessed; among them were 18 men and 13 women. SPECT scans revealed the following key diagnostic features: 85.9 % of patients exhibited bone lesions with ground-glass opacities, 88 % had multipolar involvement, 92.8 % had bilateral involvement, and 92.8 % showed peripheral involvement. The severity scores based on CT scans were significantly higher in patients requiring intensive care, with scores above 14 being more common in this group.

Conclusion

Distinct CT findings during the AI-assisted diagnosis and treatment of bone cancer provided prompt and sensitive examination capabilities. Notably, two CT phenotypes emerged, associated with large consolidation patterns and high severity scores, offering crucial insights into disease severity and aiding in clinical decision-making for intensive care requirements. The study underscores the importance of CT in the effective monitoring and management of bone cancer pre- and post-treatment.
-骨肿瘤 CT 的人工智能辅助诊断潜力及其对重症监护临床决策的影响
本研究评估了骨癌计算机断层扫描(CT)的人工智能辅助诊断潜力及其对治疗前和治疗后阶段患者护理的影响。研究比较了基于 CT 严重程度的患者管理方法,并确定了与疾病严重程度相关的不同 CT 表型。方法我们回顾性地检查了 2022 年 12 月至 2023 年 6 月期间诊断为骨癌的 50 名患者。CT扫描根据北美放射学会(RSNA)指南进行分析。本研究使用深度卷积中性网络(DCNN)模型来协助医生通过CT扫描诊断骨肿瘤。根据 CT 扫描显示的严重程度,对患者的管理方法进行了比较。结果50 名患者参与了这项研究,中位年龄为 67.2 岁,从 32 岁到 89 岁不等。其中,38%为女性,62%为男性。2022 年,19 名患者(13 名男性和 6 名女性,年龄在 32 岁至 84 岁之间)接受了评估,平均年龄为 59.9 岁。2023 年,共有 31 人接受了评估,年龄从 54 岁到 89 岁不等,平均年龄为 71.6 岁,其中男性 18 人,女性 13 人。SPECT 扫描显示了以下主要诊断特征:85.9%的患者表现为磨玻璃不透明的骨病变,88%为多极受累,92.8%为双侧受累,92.8%为周围受累。结论在人工智能辅助诊断和治疗骨癌的过程中,不同的 CT 发现提供了及时和灵敏的检查能力。值得注意的是,出现了两种 CT 表型,它们与大的合并模式和高的严重程度评分相关,为了解疾病严重程度提供了重要依据,并有助于对重症监护要求做出临床决策。这项研究强调了 CT 在有效监测和管理骨癌治疗前后的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信