Machine learning algorithms to forecast wet-period rainfall using climate indices in Northern Territory of Australia

Rashid Farooq , Monzur Alam Imteaz , Donghui Shangguan , Kamila Hlavčová
{"title":"Machine learning algorithms to forecast wet-period rainfall using climate indices in Northern Territory of Australia","authors":"Rashid Farooq ,&nbsp;Monzur Alam Imteaz ,&nbsp;Donghui Shangguan ,&nbsp;Kamila Hlavčová","doi":"10.1016/j.sctalk.2024.100397","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate rainfall prediction is crucial for understanding and managing a region's social and agricultural environment. As a key indicator of climate change, natural disasters, and local geography, rainfall data empowers us to make informed decisions for various beneficial purposes. Machine learning offers powerful tools for improving rainfall prediction accuracy and estimation capabilities. This study examines how multiple climate indices simultaneously influence wet-period rainfall patterns at two Northern Territory (NT) stations, Hermannsburg and Undoolya. We selected two machine learning models, Random Forest (RF) for its robustness and Long Short-Term Memory (LSTM) for its ability to capture temporal patterns, to investigate these relationships. For this purpose, a variety of input sets, including lagged Indian Ocean Dipole (IOD), El Nino Southern Oscillation (ENSO), and Madden Julian Oscillation (MJO), were proposed and utilized to calibrate and validate, RF and LSTM Models. Our analysis revealed that large-scale climate factors like IOD, Nino 3.4, and MJO significantly influence wet-period rainfall predictions of the NT. Furthermore, the LSTM model outperformed the RF model to predict the wet-period rainfall at the selected stations. For instance, the LSTM achieved higher R<sup>2</sup> i.e., 0.86 and lower values for both RMSE (ranging from 0.63 to 0.72) and MAE (ranging from 0.43 to 0.64) during the testing phase, indicating a closer fit between predicted and actual wet-period rainfall values.</div></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"12 ","pages":"Article 100397"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324001051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate rainfall prediction is crucial for understanding and managing a region's social and agricultural environment. As a key indicator of climate change, natural disasters, and local geography, rainfall data empowers us to make informed decisions for various beneficial purposes. Machine learning offers powerful tools for improving rainfall prediction accuracy and estimation capabilities. This study examines how multiple climate indices simultaneously influence wet-period rainfall patterns at two Northern Territory (NT) stations, Hermannsburg and Undoolya. We selected two machine learning models, Random Forest (RF) for its robustness and Long Short-Term Memory (LSTM) for its ability to capture temporal patterns, to investigate these relationships. For this purpose, a variety of input sets, including lagged Indian Ocean Dipole (IOD), El Nino Southern Oscillation (ENSO), and Madden Julian Oscillation (MJO), were proposed and utilized to calibrate and validate, RF and LSTM Models. Our analysis revealed that large-scale climate factors like IOD, Nino 3.4, and MJO significantly influence wet-period rainfall predictions of the NT. Furthermore, the LSTM model outperformed the RF model to predict the wet-period rainfall at the selected stations. For instance, the LSTM achieved higher R2 i.e., 0.86 and lower values for both RMSE (ranging from 0.63 to 0.72) and MAE (ranging from 0.43 to 0.64) during the testing phase, indicating a closer fit between predicted and actual wet-period rainfall values.
利用气候指数预报澳大利亚北部地区湿期降雨量的机器学习算法
准确的降雨预测对于了解和管理一个地区的社会和农业环境至关重要。作为气候变化、自然灾害和当地地理环境的一个关键指标,降雨数据使我们能够为各种有益的目的做出明智的决策。机器学习为提高降雨预测的准确性和估算能力提供了强大的工具。本研究探讨了多种气候指数如何同时影响北领地(NT)两个站点--赫尔曼斯堡(Hermannsburg)和恩杜利亚(Undoolya)--的湿期降雨模式。我们选择了两种机器学习模型来研究这些关系,一种是随机森林模型(RF),因为它具有鲁棒性;另一种是长短期记忆模型(LSTM),因为它能够捕捉时间模式。为此,我们提出了各种输入集,包括滞后的印度洋偶极子(IOD)、厄尔尼诺南方涛动(ENSO)和马登朱利安涛动(MJO),并利用这些输入集对 RF 和 LSTM 模型进行了校准和验证。我们的分析表明,IOD、尼诺 3.4 和 MJO 等大尺度气候因素对新界湿期降雨预测有显著影响。此外,在预测选定站点的湿期降雨量方面,LSTM 模型优于 RF 模型。例如,在测试阶段,LSTM 的 R2(即 0.86)较高,RMSE(介于 0.63 至 0.72 之间)和 MAE(介于 0.43 至 0.64 之间)均较低,表明其预测值与实际湿期降雨量值更为接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信