Samiksha Pachade , Prasanna Porwal , Manesh Kokare , Girish Deshmukh , Vivek Sahasrabuddhe , Zhengbo Luo , Feng Han , Zitang Sun , Li Qihan , Sei-ichiro Kamata , Edward Ho , Edward Wang , Asaanth Sivajohan , Saerom Youn , Kevin Lane , Jin Chun , Xinliang Wang , Yunchao Gu , Sixu Lu , Young-tack Oh , Fabrice Mériaudeau
{"title":"RFMiD: Retinal Image Analysis for multi-Disease Detection challenge","authors":"Samiksha Pachade , Prasanna Porwal , Manesh Kokare , Girish Deshmukh , Vivek Sahasrabuddhe , Zhengbo Luo , Feng Han , Zitang Sun , Li Qihan , Sei-ichiro Kamata , Edward Ho , Edward Wang , Asaanth Sivajohan , Saerom Youn , Kevin Lane , Jin Chun , Xinliang Wang , Yunchao Gu , Sixu Lu , Young-tack Oh , Fabrice Mériaudeau","doi":"10.1016/j.media.2024.103365","DOIUrl":null,"url":null,"abstract":"<div><div>In the last decades, many publicly available large fundus image datasets have been collected for diabetic retinopathy, glaucoma, and age-related macular degeneration, and a few other frequent pathologies. These publicly available datasets were used to develop a computer-aided disease diagnosis system by training deep learning models to detect these frequent pathologies. One challenge limiting the adoption of a such system by the ophthalmologist is, computer-aided disease diagnosis system ignores sight-threatening rare pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy and others that ophthalmologists currently detect. Aiming to advance the state-of-the-art in automatic ocular disease classification of frequent diseases along with the rare pathologies, a grand challenge on “Retinal Image Analysis for multi-Disease Detection” was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2021). This paper, reports the challenge organization, dataset, top-performing participants solutions, evaluation measures, and results based on a new “Retinal Fundus Multi-disease Image Dataset” (RFMiD). There were two principal sub-challenges: disease screening (i.e. presence versus absence of pathology — a binary classification problem) and disease/pathology classification (a 28-class multi-label classification problem). It received a positive response from the scientific community with 74 submissions by individuals/teams that effectively entered in this challenge. The top-performing methodologies utilized a blend of data-preprocessing, data augmentation, pre-trained model, and model ensembling. This multi-disease (frequent and rare pathologies) detection will enable the development of generalizable models for screening the retina, unlike the previous efforts that focused on the detection of specific diseases.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002901","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decades, many publicly available large fundus image datasets have been collected for diabetic retinopathy, glaucoma, and age-related macular degeneration, and a few other frequent pathologies. These publicly available datasets were used to develop a computer-aided disease diagnosis system by training deep learning models to detect these frequent pathologies. One challenge limiting the adoption of a such system by the ophthalmologist is, computer-aided disease diagnosis system ignores sight-threatening rare pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy and others that ophthalmologists currently detect. Aiming to advance the state-of-the-art in automatic ocular disease classification of frequent diseases along with the rare pathologies, a grand challenge on “Retinal Image Analysis for multi-Disease Detection” was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2021). This paper, reports the challenge organization, dataset, top-performing participants solutions, evaluation measures, and results based on a new “Retinal Fundus Multi-disease Image Dataset” (RFMiD). There were two principal sub-challenges: disease screening (i.e. presence versus absence of pathology — a binary classification problem) and disease/pathology classification (a 28-class multi-label classification problem). It received a positive response from the scientific community with 74 submissions by individuals/teams that effectively entered in this challenge. The top-performing methodologies utilized a blend of data-preprocessing, data augmentation, pre-trained model, and model ensembling. This multi-disease (frequent and rare pathologies) detection will enable the development of generalizable models for screening the retina, unlike the previous efforts that focused on the detection of specific diseases.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.