A family of discrete maximum-entropy distributions

Pub Date : 2024-10-01 DOI:10.1016/j.jspi.2024.106243
David J. Hessen
{"title":"A family of discrete maximum-entropy distributions","authors":"David J. Hessen","doi":"10.1016/j.jspi.2024.106243","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a family of maximum-entropy distributions with general discrete support is derived. Members of the family are distinguished by the number of specified non-central moments. In addition, a subfamily of discrete symmetric distributions is defined. Attention is paid to maximum likelihood estimation of the parameters of any member of the general family. It is shown that the parameters of any special case with infinite support can be estimated using a conditional distribution given a finite subset of the total support. In an empirical data example, the procedures proposed are demonstrated.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824001009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a family of maximum-entropy distributions with general discrete support is derived. Members of the family are distinguished by the number of specified non-central moments. In addition, a subfamily of discrete symmetric distributions is defined. Attention is paid to maximum likelihood estimation of the parameters of any member of the general family. It is shown that the parameters of any special case with infinite support can be estimated using a conditional distribution given a finite subset of the total support. In an empirical data example, the procedures proposed are demonstrated.
分享
查看原文
离散最大熵分布系列
本文导出了具有一般离散支持的最大熵分布族。该族成员根据指定的非中心矩的数量来区分。此外,还定义了离散对称分布子族。一般族成员参数的最大似然估计受到关注。结果表明,任何具有无限支持的特例的参数都可以使用给定总支持的有限子集的条件分布来估计。在一个经验数据示例中,演示了所提出的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信