{"title":"Learnability of state spaces of physical systems is undecidable","authors":"Petr Spelda, Vit Stritecky","doi":"10.1016/j.jocs.2024.102452","DOIUrl":null,"url":null,"abstract":"<div><div>Despite an increasing role of machine learning in science, there is a lack of results on limits of empirical exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the computable Probably Approximately Correct learning framework. This leads to identifying the first limit for learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring the limits close to the current practice and make a first step in connecting scientific exploration aided by machine learning with results from learning theory.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"83 ","pages":"Article 102452"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187775032400245X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite an increasing role of machine learning in science, there is a lack of results on limits of empirical exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the computable Probably Approximately Correct learning framework. This leads to identifying the first limit for learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring the limits close to the current practice and make a first step in connecting scientific exploration aided by machine learning with results from learning theory.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).