Algorithmic study on liar’s vertex-edge domination problem

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Debojyoti Bhattacharya, Subhabrata Paul
{"title":"Algorithmic study on liar’s vertex-edge domination problem","authors":"Debojyoti Bhattacharya, Subhabrata Paul","doi":"10.1007/s10878-024-01208-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G=(V,E)\\)</span> be a graph. For an edge <span>\\(e=xy\\in E\\)</span>, the closed neighbourhood of <i>e</i>, denoted by <span>\\(N_G[e]\\)</span> or <span>\\(N_G[xy]\\)</span>, is the set <span>\\(N_G[x]\\cup N_G[y]\\)</span>. A vertex set <span>\\(L\\subseteq V\\)</span> is liar’s vertex-edge dominating set of a graph <span>\\(G=(V,E)\\)</span> if for every <span>\\(e_i\\in E\\)</span>, <span>\\(|N_G[e_i]\\cap L|\\ge 2\\)</span> and for every pair of distinct edges <span>\\(e_i\\)</span> and <span>\\(e_j\\)</span>, <span>\\(|(N_G[e_i]\\cup N_G[e_j])\\cap L|\\ge 3\\)</span>. This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph <i>G</i>, the <span>Minimum Liar’s Vertex-Edge Domination Problem</span> (<span>MinLVEDP</span>) asks to find a liar’s vertex-edge dominating set of <i>G</i> of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that <span>MinLVEDP</span> can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for <span>MinLVEDP</span> in general graphs and <i>p</i>-claw free graphs. On the negative side, we show that the <span>MinLVEDP</span> cannot be approximated within <span>\\(\\frac{1}{2}(\\frac{1}{8}-\\epsilon )\\ln |V|\\)</span> for any <span>\\(\\epsilon &gt;0\\)</span>, unless <span>\\(NP\\subseteq DTIME(|V|^{O(\\log (\\log |V|)})\\)</span>. Finally, we prove that the <span>MinLVEDP</span> is APX-complete for bounded degree graphs and <i>p</i>-claw-free graphs for <span>\\(p\\ge 6\\)</span>.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"60 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01208-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G=(V,E)\) be a graph. For an edge \(e=xy\in E\), the closed neighbourhood of e, denoted by \(N_G[e]\) or \(N_G[xy]\), is the set \(N_G[x]\cup N_G[y]\). A vertex set \(L\subseteq V\) is liar’s vertex-edge dominating set of a graph \(G=(V,E)\) if for every \(e_i\in E\), \(|N_G[e_i]\cap L|\ge 2\) and for every pair of distinct edges \(e_i\) and \(e_j\), \(|(N_G[e_i]\cup N_G[e_j])\cap L|\ge 3\). This paper introduces the notion of liar’s vertex-edge domination which arises naturally from some applications in communication networks. Given a graph G, the Minimum Liar’s Vertex-Edge Domination Problem (MinLVEDP) asks to find a liar’s vertex-edge dominating set of G of minimum cardinality. In this paper, we study this problem from an algorithmic point of view. We show that MinLVEDP can be solved in linear time for trees, whereas the decision version of this problem is NP-complete for general graphs, chordal graphs, and bipartite graphs. We further study approximation algorithms for this problem. We propose two approximation algorithms for MinLVEDP in general graphs and p-claw free graphs. On the negative side, we show that the MinLVEDP cannot be approximated within \(\frac{1}{2}(\frac{1}{8}-\epsilon )\ln |V|\) for any \(\epsilon >0\), unless \(NP\subseteq DTIME(|V|^{O(\log (\log |V|)})\). Finally, we prove that the MinLVEDP is APX-complete for bounded degree graphs and p-claw-free graphs for \(p\ge 6\).

Abstract Image

骗子顶点边缘支配问题的算法研究
让(G=(V,E)\)是一个图。对于一条边\(e=xy\in E\), e的闭邻域,用\(N_G[e]\)或\(N_G[xy]\)表示,是集合\(N_G[x]\cup N_G[y]\)。一个顶点集合(L/subseteq V/)是一个图(G=(V,E))的顶点-边支配集,如果对于每一个(e/i/in E/)、\(|N_G[e_i]\cap L|ge 2\) 并且对于每一对不同的边 \(e_i\) 和 \(e_j\), \(|(N_G[e_i]\cup N_G[e_j])\cap L|ge 3\).本文介绍了说谎者顶点边支配的概念,这个概念是在通信网络中的一些应用中自然产生的。给定一个图 G,最小说谎者顶点-边支配问题(Minimum Liar's Vertex-Edge Domination Problem,MinLVEDP)要求找到一个最小卡片度的 G 的说谎者顶点-边支配集。本文从算法的角度研究了这一问题。我们证明,对于树,MinLVEDP 可以在线性时间内求解,而对于一般图、弦图和双分图,该问题的判定版本则是 NP-complete。我们进一步研究了该问题的近似算法。我们为一般图和无 p 爪图中的 MinLVEDP 提出了两种近似算法。在反面,我们证明了对于任意 \(\epsilon >0/),除非 \(NP\subseteq DTIME(|V|^{O(\log (\log |V|)})\) ,否则 MinLVEDP 无法在 \(\frac{1}{2}(\frac{1}{8}-\epsilon )\ln |V|\) 的范围内被逼近。最后,我们证明 MinLVEDP 对于有界度图和 p-claw-free 图来说是 APX-complete,即 \(p\ge 6\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信