{"title":"A common generalization of budget games and congestion games","authors":"Fuga Kiyosue, Kenjiro Takazawa","doi":"10.1007/s10878-024-01218-7","DOIUrl":null,"url":null,"abstract":"<p>Budget games were introduced by Drees, Riechers, and Skopalik (2014) as a model of noncooperative games arising from resource allocation problems. Budget games have several similarities to congestion games, one of which is that the matroid structure of the strategy space is essential for the existence of a pure Nash equilibrium (PNE). Despite these similarities, however, the theoretical relation between budget games and congestion games has been unclear. In this paper, we provide a common generalization of budget games and congestion games, called generalized budget games (g-budget games, for short), to establish a large class of noncooperative games retaining the nice property of the matroid structure. We show that the model of g-budget games includes weighted congestion games and player-specific congestion games under certain assumptions. We further show that g-budget games also include offset budget games, a generalized model of budget games by Drees, Feldotto, Riechers, and Skopalik (2019). We then prove that every matroid g-budget game has a PNE, which extends the result for budget games. We finally a PNE in a certain class of singleton g-budget games can be computed in a greedy manner.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01218-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Budget games were introduced by Drees, Riechers, and Skopalik (2014) as a model of noncooperative games arising from resource allocation problems. Budget games have several similarities to congestion games, one of which is that the matroid structure of the strategy space is essential for the existence of a pure Nash equilibrium (PNE). Despite these similarities, however, the theoretical relation between budget games and congestion games has been unclear. In this paper, we provide a common generalization of budget games and congestion games, called generalized budget games (g-budget games, for short), to establish a large class of noncooperative games retaining the nice property of the matroid structure. We show that the model of g-budget games includes weighted congestion games and player-specific congestion games under certain assumptions. We further show that g-budget games also include offset budget games, a generalized model of budget games by Drees, Feldotto, Riechers, and Skopalik (2019). We then prove that every matroid g-budget game has a PNE, which extends the result for budget games. We finally a PNE in a certain class of singleton g-budget games can be computed in a greedy manner.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.