Bounded connected components of polynomial lemniscates

IF 1.4 3区 数学 Q1 MATHEMATICS
Adam Kraus, Brian Simanek
{"title":"Bounded connected components of polynomial lemniscates","authors":"Adam Kraus,&nbsp;Brian Simanek","doi":"10.1007/s13324-024-00969-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider families of polynomial lemniscates in the complex plane and determine if they bound a Jordan domain. This allows us to find examples of regions for which we can calculate the projection of <span>\\(\\bar{z}\\)</span> to the Bergman space of the bounded region. Such knowledge has applications to the calculation of torsional rigidity.\n</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00969-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider families of polynomial lemniscates in the complex plane and determine if they bound a Jordan domain. This allows us to find examples of regions for which we can calculate the projection of \(\bar{z}\) to the Bergman space of the bounded region. Such knowledge has applications to the calculation of torsional rigidity.

多项式∞的有界连通分量
我们考虑复平面上的多项式∞族,并确定它们是否约束了一个约旦域。这样,我们就能找到一些区域的例子,从而计算出这些区域的 \(\bar{z}\) 对有界区域的伯格曼空间的投影。这些知识可以应用于扭转刚性的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信