On the graph \(G_P(R)\) over commutative ring R

Q2 Mathematics
B. Biswas, S. Kar
{"title":"On the graph \\(G_P(R)\\) over commutative ring R","authors":"B. Biswas,&nbsp;S. Kar","doi":"10.1007/s11565-024-00533-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative ring with identity 1. Then the graph of <i>R</i>, denoted by <span>\\(G_P(R)\\)</span> which is defined as the vertices are the elements of <i>R</i> and any two distinct elements <i>a</i> and <i>b</i> are adjacent if and only if the corresponding principal ideals <i>aR</i> and <i>bR</i> satisfy the condition: <span>\\((aR)(bR)=aR\\bigcap bR\\)</span>. In this paper, we characterize the class of finite commutative rings with 1 for which the graph <span>\\(G_P(R)\\)</span> is complete. Here we are able to show that the graph <span>\\(G_P(R)\\)</span> is a line graph of some graph <i>G</i> if and only if <span>\\(G_P(R)\\)</span> is complete. For <span>\\(n=p_1^{r_1}p_2^{r_2}\\ldots p_{k}^{r_k}\\)</span>, we show that chromatic number of <span>\\(G_P(\\mathbb {Z}_n)\\)</span> is equal to the sum of the number of regular elements in <span>\\(\\mathbb {Z}_n\\)</span> and the number of integers <i>i</i> such that <span>\\({r_{i}}&gt;1\\)</span>. Moreover, we characterize those <i>n</i> for which the graph <span>\\(G_P(\\mathbb {Z}_n)\\)</span> is end-regular.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1621 - 1633"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00533-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative ring with identity 1. Then the graph of R, denoted by \(G_P(R)\) which is defined as the vertices are the elements of R and any two distinct elements a and b are adjacent if and only if the corresponding principal ideals aR and bR satisfy the condition: \((aR)(bR)=aR\bigcap bR\). In this paper, we characterize the class of finite commutative rings with 1 for which the graph \(G_P(R)\) is complete. Here we are able to show that the graph \(G_P(R)\) is a line graph of some graph G if and only if \(G_P(R)\) is complete. For \(n=p_1^{r_1}p_2^{r_2}\ldots p_{k}^{r_k}\), we show that chromatic number of \(G_P(\mathbb {Z}_n)\) is equal to the sum of the number of regular elements in \(\mathbb {Z}_n\) and the number of integers i such that \({r_{i}}>1\). Moreover, we characterize those n for which the graph \(G_P(\mathbb {Z}_n)\) is end-regular.

Abstract Image

在交换环 R 上的图\(G_P(R)\)上
让 R 是一个交换环,其标识为 1。那么 R 的图,用 \(G_P(R)\ 表示,其定义为顶点是 R 的元素,并且任何两个不同的元素 a 和 b 相邻,当且仅当相应的主理想 aR 和 bR 满足条件时:\(aR)(bR)=aR\bigcap bR\).在本文中,我们描述了图 \(G_P(R)\)是完整的、有 1 的有限交换环类。在这里,我们能够证明,当且仅当\(G_P(R)\)是完整的,图\(G_P(R)\)是某个图 G 的线图。对于 \(n=p_1^{r_1}p_2^{r_2}\ldots p_{k}^{r_k}\),我们证明了 \(G_P(\mathbb {Z}_n)\)的色度数等于 \(\mathbb {Z}_n\)中规则元素的个数与使得 \({r_{i}}>1\) 的整数 i 的个数之和。此外,我们还描述了那些 n 的图\(G_P(\mathbb {Z}_n)\) 是端规则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信