{"title":"On Anomalous Diffusion in the Kraichnan Model and Correlated-in-Time Variants","authors":"Keefer Rowan","doi":"10.1007/s00205-024-02045-0","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a concise PDE-based proof of anomalous diffusion in the Kraichan model—a stochastic, white-in-time model of passive scalar turbulence; that is, we show an exponential rate of <span>\\(L^2\\)</span> decay in expectation of a passive scalar advected by a certain white-in-time, correlated-in-space, divergence-free Gaussian field, uniform in the initial data and the diffusivity of the passive scalar. Additionally, we provide examples of correlated-in-time versions of the Kraichnan model which fail to exhibit anomalous diffusion despite their (formal) white-in-time limits exhibiting anomalous diffusion. As part of this analysis, we prove that anomalous diffusion of a scalar advected by some flow implies non-uniqueness of the ODE trajectories of that flow.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02045-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We provide a concise PDE-based proof of anomalous diffusion in the Kraichan model—a stochastic, white-in-time model of passive scalar turbulence; that is, we show an exponential rate of \(L^2\) decay in expectation of a passive scalar advected by a certain white-in-time, correlated-in-space, divergence-free Gaussian field, uniform in the initial data and the diffusivity of the passive scalar. Additionally, we provide examples of correlated-in-time versions of the Kraichnan model which fail to exhibit anomalous diffusion despite their (formal) white-in-time limits exhibiting anomalous diffusion. As part of this analysis, we prove that anomalous diffusion of a scalar advected by some flow implies non-uniqueness of the ODE trajectories of that flow.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.