Reading the log canonical threshold of a plane curve singularity from its Newton polyhedron

Q2 Mathematics
Erik Paemurru
{"title":"Reading the log canonical threshold of a plane curve singularity from its Newton polyhedron","authors":"Erik Paemurru","doi":"10.1007/s11565-024-00524-6","DOIUrl":null,"url":null,"abstract":"<div><p>There is a proposition due to Kollár as reported by Kollár (Proceedings of the summer research institute, Santa Cruz, CA, USA, July 9–29, 1995, American Mathematical Society, Providence, 1997) on computing log canonical thresholds of certain hypersurface germs using weighted blowups, which we extend to weighted blowups with non-negative weights. Using this, we show that the log canonical threshold of a convergent complex power series is at most 1/<i>c</i>, where <span>\\((c, \\ldots , c)\\)</span> is a point on a facet of its Newton polyhedron. Moreover, in the case <span>\\(n = 2\\)</span>, if the power series is weakly normalised with respect to this facet or the point (<i>c</i>, <i>c</i>) belongs to two facets, then we have equality. This generalises a theorem of Varchenko 1982 to non-isolated singularities.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"1069 - 1082"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-024-00524-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00524-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

There is a proposition due to Kollár as reported by Kollár (Proceedings of the summer research institute, Santa Cruz, CA, USA, July 9–29, 1995, American Mathematical Society, Providence, 1997) on computing log canonical thresholds of certain hypersurface germs using weighted blowups, which we extend to weighted blowups with non-negative weights. Using this, we show that the log canonical threshold of a convergent complex power series is at most 1/c, where \((c, \ldots , c)\) is a point on a facet of its Newton polyhedron. Moreover, in the case \(n = 2\), if the power series is weakly normalised with respect to this facet or the point (cc) belongs to two facets, then we have equality. This generalises a theorem of Varchenko 1982 to non-isolated singularities.

从牛顿多面体读取平面曲线奇点的对数规范阈值
科拉尔(Kollár)报告了一个关于使用加权炸开计算某些超曲面胚芽的对数规范阈值的命题(1995 年 7 月 9-29 日美国加利福尼亚州圣克鲁斯夏季研究会论文集,美国数学学会,普罗维登斯,1997 年),我们将其扩展到非负权重的加权炸开。利用这一点,我们证明了收敛复幂级数的对数规范阈值最多为 1/c,其中 \((c, \ldots , c)\) 是其牛顿多面体的一个面上的点。此外,在 \(n = 2\) 的情况下,如果幂级数关于这个面是弱归一化的,或者点(c, c)属于两个面,那么我们就有相等性。这就把瓦尔琴科 1982 年的一个定理推广到了非孤立奇点上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信