A New Gauge for Gravitational Perturbations of Kerr Spacetimes II: The Linear Stability of Schwarzschild Revisited

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Gabriele Benomio
{"title":"A New Gauge for Gravitational Perturbations of Kerr Spacetimes II: The Linear Stability of Schwarzschild Revisited","authors":"Gabriele Benomio","doi":"10.1007/s00205-024-02036-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new proof of linear stability of the Schwarzschild solution to gravitational perturbations. Our approach employs the system of linearised gravity in the new geometric gauge of Benomio (A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602), specialised to the <span>\\(|a|=0\\)</span> case. The proof fundamentally relies on the novel structure of the transport equations in the system. Indeed, while exploiting the well-known decoupling of two gauge invariant linearised quantities into spin <span>\\(\\pm 2\\)</span> Teukolsky equations, we make enhanced use of the <i>red-shifted</i> transport equations and their stabilising properties to control the gauge dependent part of the system. As a result, an <i>initial-data</i> gauge normalisation suffices to establish both orbital and <i>asymptotic</i> stability for <i>all</i> the linearised quantities in the system. The absence of future gauge normalisations is a novel element in the linear stability analysis of black hole spacetimes in geometric gauges governed by transport equations. In particular, our approach simplifies the proof of Dafermos et al. (Acta Math 222:1–214, 2019), which requires a <i>future</i> normalised (double-null) gauge to establish asymptotic stability for the full system.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02036-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02036-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new proof of linear stability of the Schwarzschild solution to gravitational perturbations. Our approach employs the system of linearised gravity in the new geometric gauge of Benomio (A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602), specialised to the \(|a|=0\) case. The proof fundamentally relies on the novel structure of the transport equations in the system. Indeed, while exploiting the well-known decoupling of two gauge invariant linearised quantities into spin \(\pm 2\) Teukolsky equations, we make enhanced use of the red-shifted transport equations and their stabilising properties to control the gauge dependent part of the system. As a result, an initial-data gauge normalisation suffices to establish both orbital and asymptotic stability for all the linearised quantities in the system. The absence of future gauge normalisations is a novel element in the linear stability analysis of black hole spacetimes in geometric gauges governed by transport equations. In particular, our approach simplifies the proof of Dafermos et al. (Acta Math 222:1–214, 2019), which requires a future normalised (double-null) gauge to establish asymptotic stability for the full system.

克尔时空引力扰动的新量纲 II:重新审视施瓦兹柴尔德的线性稳定性
我们提出了施瓦兹柴尔德解引力扰动线性稳定性的新证明。我们的方法采用了贝诺米奥(A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602)的新几何量规中的线性化引力系统,特化为\(|a|=0\)情况。证明从根本上依赖于系统中传输方程的新结构。事实上,在利用众所周知的两个量规不变线性化量解耦(decoupling)到自旋(\pm 2\) Teukolsky方程的同时,我们加强了对红移输运方程及其稳定特性的利用,以控制该系统的量规相关部分。因此,初始数据的轨则归一化足以建立系统中所有线性化量的轨道稳定性和渐近稳定性。在受输运方程支配的几何量规中,没有未来量规归一化是黑洞时空线性稳定性分析中的一个新元素。特别是,我们的方法简化了达菲莫斯等人(Acta Math 222:1-214,2019)的证明,后者需要一个未来归一化(双空)规来建立整个系统的渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信