A class of semilinear hypoelliptic Robin problems and Morse theory

Q2 Mathematics
Kazuaki Taira
{"title":"A class of semilinear hypoelliptic Robin problems and Morse theory","authors":"Kazuaki Taira","doi":"10.1007/s11565-024-00529-1","DOIUrl":null,"url":null,"abstract":"<div><p>(1) Background: This paper is devoted to the study of a class of semilinear elliptic boundary value problems with hypoelliptic (degenerate) Robin condition that includes as particular cases the Dirichlet, Neumann and regular Robin problems. (2) Methods: We give a rigorous proof of main theorem, which is based heavily on the theory of linear elliptic boundary value problems in the framework of <span>\\(L^{p}\\)</span> Sobolev spaces. (3) Results: We extend earlier theorems due to Ambrosetti–Lupo and Struwe to the hypoelliptic Robin case via Morse theory. (4) Conclusions: The main purpose of this paper is to understand the essence of a modern version of the classical Lyapunov–Schmidt procedure through a concrete approach to semilinear hypoelliptic Robin problems.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1545 - 1605"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00529-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: This paper is devoted to the study of a class of semilinear elliptic boundary value problems with hypoelliptic (degenerate) Robin condition that includes as particular cases the Dirichlet, Neumann and regular Robin problems. (2) Methods: We give a rigorous proof of main theorem, which is based heavily on the theory of linear elliptic boundary value problems in the framework of \(L^{p}\) Sobolev spaces. (3) Results: We extend earlier theorems due to Ambrosetti–Lupo and Struwe to the hypoelliptic Robin case via Morse theory. (4) Conclusions: The main purpose of this paper is to understand the essence of a modern version of the classical Lyapunov–Schmidt procedure through a concrete approach to semilinear hypoelliptic Robin problems.

Abstract Image

一类半线性次椭圆罗宾问题和莫尔斯理论
(1) 背景:本文致力于研究一类具有次椭圆(退化)罗宾条件的半线性椭圆边界值问题,其中包括 Dirichlet 问题、Neumann 问题和正则罗宾问题。(2) 方法:我们给出了主定理的严格证明,它主要基于 \(L^{p}\) Sobolev 空间框架下的线性椭圆边界值问题理论。(3) 结果:我们通过莫尔斯理论将早先由 Ambrosetti-Lupo 和 Struwe 提出的定理扩展到了次椭圆 Robin 情况。(4) 结论:本文的主要目的是通过对半线性次椭圆罗宾问题的具体研究,理解经典 Lyapunov-Schmidt 过程现代版的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信