Rate of convergence of Szász-Durrmeyer type operators involving Hermite polynomials

Q2 Mathematics
Ajay Kumar
{"title":"Rate of convergence of Szász-Durrmeyer type operators involving Hermite polynomials","authors":"Ajay Kumar","doi":"10.1007/s11565-024-00527-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to investigate a generalized version of Szász operators linked with Hermite polynomials in the Durrmeyer framework. Initially, we delve into their approximation properties employing Peetre’s K-functional, along with classical and second-order modulus of continuity. Subsequently, we evaluate the convergence speed using a Lipschitz-type function and establish a Voronovskaya-type approximation theorem. Lastly, we investigate the convergence rate for differentiable functions with bounded variation derivatives.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1527 - 1543"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00527-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate a generalized version of Szász operators linked with Hermite polynomials in the Durrmeyer framework. Initially, we delve into their approximation properties employing Peetre’s K-functional, along with classical and second-order modulus of continuity. Subsequently, we evaluate the convergence speed using a Lipschitz-type function and establish a Voronovskaya-type approximation theorem. Lastly, we investigate the convergence rate for differentiable functions with bounded variation derivatives.

涉及赫米特多项式的 Szász-Durrmeyer 型算子的收敛率
本研究旨在研究在 Durrmeyer 框架内与赫尔米特多项式相关联的 Szász 算子的广义版本。首先,我们利用 Peetre 的 K 函数以及经典和二阶连续性模量深入研究了它们的逼近特性。随后,我们利用 Lipschitz 型函数评估收敛速度,并建立 Voronovskaya 型近似定理。最后,我们研究了具有有界变化导数的可微函数的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信