{"title":"Georeferencing Remote Sensing Data Using Long Gradients","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X24700140","DOIUrl":null,"url":null,"abstract":"<p>The paper investigates algorithms using long intensity gradients for georeferencing of Earth remote sensing data. The case is considered in which one “reliable” referenced set of remote sensing data is already known for a particular area. New input data are referenced to this “reliable” set by detecting resemblant fragments in the “relible” data set and new remote sensing data. A set of pairs of resemblant fragments makes it possible to calculate the transformation parameters of new data. To increase the efficiency of resemblant fragments detection, we go to the space of long intensity gradients, which makes the georeferencing method more stable to admissible differences between resemblant fragments. The paper considers a few algorithms of going to the long gradient space and compares them. The computaional experiment provides grounds for recommending the best way of going to the long gradient space.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3","pages":"255 - 258"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper investigates algorithms using long intensity gradients for georeferencing of Earth remote sensing data. The case is considered in which one “reliable” referenced set of remote sensing data is already known for a particular area. New input data are referenced to this “reliable” set by detecting resemblant fragments in the “relible” data set and new remote sensing data. A set of pairs of resemblant fragments makes it possible to calculate the transformation parameters of new data. To increase the efficiency of resemblant fragments detection, we go to the space of long intensity gradients, which makes the georeferencing method more stable to admissible differences between resemblant fragments. The paper considers a few algorithms of going to the long gradient space and compares them. The computaional experiment provides grounds for recommending the best way of going to the long gradient space.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.