Local Strong Solution for a Nonhomogeneous Incompressible Cell-Fluid Navier-Stokes Model with Chemotaxis

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Juliana Honda Lopes, Gabriela Planas
{"title":"Local Strong Solution for a Nonhomogeneous Incompressible Cell-Fluid Navier-Stokes Model with Chemotaxis","authors":"Juliana Honda Lopes,&nbsp;Gabriela Planas","doi":"10.1007/s10440-024-00685-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a general nonhomogeneous incompressible cell-fluid Navier-Stokes model incorporating chemotaxis in a two or three-dimensional bounded domain. This model comprises two mass balance equations and two general momentum balance equations, specifically for the cell and fluid phases, combined with a convection-diffusion-reaction equation for oxygen. We establish the existence and uniqueness of a local strong solution under initial data that satisfy natural compatibility conditions. Additionally, we present a blow-up criterion for the strong solution.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00685-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00685-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses a general nonhomogeneous incompressible cell-fluid Navier-Stokes model incorporating chemotaxis in a two or three-dimensional bounded domain. This model comprises two mass balance equations and two general momentum balance equations, specifically for the cell and fluid phases, combined with a convection-diffusion-reaction equation for oxygen. We establish the existence and uniqueness of a local strong solution under initial data that satisfy natural compatibility conditions. Additionally, we present a blow-up criterion for the strong solution.

具有趋化性的非均质不可压缩细胞-流体纳维-斯托克斯模型的局部强解法
本文论述了在二维或三维有界域中结合趋化作用的一般非均质不可压缩细胞-流体 Navier-Stokes 模型。该模型包括两个质量平衡方程和两个一般动量平衡方程,特别是针对细胞和流体相,并结合了氧气的对流-扩散-反应方程。我们确定了在满足自然相容性条件的初始数据下局部强解的存在性和唯一性。此外,我们还提出了强解的炸毁准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信