Heat-type equations on manifolds with fibered boundaries I: Schauder estimates

IF 0.6 3区 数学 Q3 MATHEMATICS
Bruno Caldeira, Giuseppe Gentile
{"title":"Heat-type equations on manifolds with fibered boundaries I: Schauder estimates","authors":"Bruno Caldeira,&nbsp;Giuseppe Gentile","doi":"10.1007/s10455-024-09970-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold <i>M</i> with fibered boundary and a <span>\\(\\Phi \\)</span>-metric <span>\\(g_\\Phi \\)</span>. This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"66 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09970-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold M with fibered boundary and a \(\Phi \)-metric \(g_\Phi \). This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.

有纤维边界流形上的热型方程 I:绍德估计
在本文中,我们证明了具有纤维边界和 \(\Phi \)度量 \(g_\Phi \)的流形 M 上的拉普拉斯-贝尔特拉米算子的抛物线 Schauder 估计。这种设置概括了渐近圆锥(散射)空间,并包括引力瞬子的特殊情况。本文与第二部分相结合,为即将讨论这种环境下的几何流奠定了重要基础;特别是山叶流和平均曲率流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信