Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products

IF 0.6 3区 数学 Q3 MATHEMATICS
Anilatmaja Aryasomayajula, Arijit Mukherjee
{"title":"Estimates of Kähler metrics on noncompact finite volume hyperbolic Riemann surfaces, and their symmetric products","authors":"Anilatmaja Aryasomayajula,&nbsp;Arijit Mukherjee","doi":"10.1007/s10455-024-09967-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> denote a noncompact finite volume hyperbolic Riemann surface of genus <span>\\(g\\ge 2\\)</span>, with only one puncture at <span>\\(i\\infty \\)</span> (identifying <i>X</i> with its universal cover <span>\\({\\mathbb {H}}\\)</span>). Let <span>\\({{{\\overline{X}}}}:=X\\cup \\lbrace i\\infty \\rbrace \\)</span> denote the Satake compactification of <i>X</i>. Let <span>\\(\\Omega _{{{{\\overline{X}}}}}\\)</span> denote the cotangent bundle on <span>\\({{{\\overline{X}}}}\\)</span>. For <span>\\(k\\gg 1\\)</span>, we derive an estimate for <span>\\(\\mu _{{ {\\overline{X}}}}^{\\textrm{Ber},{{k}}}\\)</span>, the Bergman metric associated to the line bundle <span>\\({{\\mathcal {L}}}^{k}:=\\Omega _{{{{\\overline{X}}}}}^{\\otimes {{k}}}\\otimes {{\\mathcal {O}}}_{{{{\\overline{X}}}}}((k-1)i\\infty )\\)</span>. For a given <span>\\(d\\ge 1\\)</span>, the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}})}^{\\textrm{FS},k}\\)</span>, defines a Kähler metric on <span>\\(\\textrm{Sym}^{{d}}({{\\overline{X}}})\\)</span>, the <i>d</i>-fold symmetric product of <span>\\({{{\\overline{X}}}}\\)</span>. Using our estimates of <span>\\(\\mu _{{ {\\overline{X}}}}^{\\textrm{Ber},{{k}}}\\)</span>, as an application, we derive an estimate for <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}}),\\textrm{vol}}^{\\textrm{FS},k}\\)</span>, the volume form associated to the (1,1)-form <span>\\(\\mu _{\\textrm{Sym}^{{d}}({{\\overline{X}}})}^{\\textrm{FS},k}\\)</span>.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"66 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09967-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X denote a noncompact finite volume hyperbolic Riemann surface of genus \(g\ge 2\), with only one puncture at \(i\infty \) (identifying X with its universal cover \({\mathbb {H}}\)). Let \({{{\overline{X}}}}:=X\cup \lbrace i\infty \rbrace \) denote the Satake compactification of X. Let \(\Omega _{{{{\overline{X}}}}}\) denote the cotangent bundle on \({{{\overline{X}}}}\). For \(k\gg 1\), we derive an estimate for \(\mu _{{ {\overline{X}}}}^{\textrm{Ber},{{k}}}\), the Bergman metric associated to the line bundle \({{\mathcal {L}}}^{k}:=\Omega _{{{{\overline{X}}}}}^{\otimes {{k}}}\otimes {{\mathcal {O}}}_{{{{\overline{X}}}}}((k-1)i\infty )\). For a given \(d\ge 1\), the pull-back of the Fubini-Study metric on the Grassmannian, which we denote by \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}})}^{\textrm{FS},k}\), defines a Kähler metric on \(\textrm{Sym}^{{d}}({{\overline{X}}})\), the d-fold symmetric product of \({{{\overline{X}}}}\). Using our estimates of \(\mu _{{ {\overline{X}}}}^{\textrm{Ber},{{k}}}\), as an application, we derive an estimate for \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}}),\textrm{vol}}^{\textrm{FS},k}\), the volume form associated to the (1,1)-form \(\mu _{\textrm{Sym}^{{d}}({{\overline{X}}})}^{\textrm{FS},k}\).

非紧凑有限体积双曲黎曼曲面上的凯勒度量及其对称积的估算
让 X 表示一个非紧凑的有限容积双曲黎曼曲面,其属度为(g\ge 2),只有一个穿刺点在(i\infty \)处(将 X 与其普遍盖({\mathbb {H}}\)识别)。让({{\overline{X}}}}:=X\cup \lbrace i\infty \rbrace \)表示X的Satake压缩。让(\Omega _{{{{\overline{X}}}}}\)表示({{\overline{X}}}}\)上的切线束。对于\(k\gg 1\), 我们得出了对\(\mu _{{{overline{X}}}}^{textrm{Ber},{{k}}}\)的估计,即与线束 \({{\mathcal {L}}}^{k}} 相关的伯格曼度量:=\Omega _{{{{\overline{X}}}}}^{/otimes {{k}}}}/otimes {{mathcal {O}}}_{{{{\overline{X}}}}}((k-1)i\infty )\).对于给定的 \(d\ge 1\), 我们用 \(\mu _{\textrm{Sym}^{{d}}({{overline{X}}})}^{textrm{FS}}来表示格拉斯曼上的富比尼-斯图迪度量的回拉、k})上定义了一个凯勒度量(\textrm{Sym}^{d}}({{\overline{X}}})),即 \({{\overline{X}}}})的 d 叠对称积。利用我们对 \(\mu _{{ {\overline{X}}}}^{textrm{Ber},{{{k}}}\) 的估计,作为一个应用,我们得出了对\(\mu _{\textrm{Sym}^{d}}({{\overline{X}}}) 的估计、\(1,1)-form \(\mu _{textrm{Sym}^{d}}({{overline{X}}})}^{\textrm{FS},k}\) 的相关体积形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信