Nhat Trung Nguyen, A. Rogozin, D. Metelev, A. Gasnikov
{"title":"Min-Max Optimization over Slowly Time-Varying Graphs","authors":"Nhat Trung Nguyen, A. Rogozin, D. Metelev, A. Gasnikov","doi":"10.1134/S1064562423701533","DOIUrl":null,"url":null,"abstract":"<p>Distributed optimization is an important direction of research in modern optimization theory. Its applications include large scale machine learning, distributed signal processing and many others. The paper studies decentralized min-max optimization for saddle point problems. Saddle point problems arise in training adversarial networks and in robust machine learning. The focus of the work is optimization over (slowly) time-varying networks. The topology of the network changes from time to time, and the velocity of changes is limited. We show that, analogically to decentralized optimization, it is sufficient to change only two edges per iteration in order to slow down convergence to the arbitrary time-varying case. At the same time, we investigate several classes of time-varying graphs for which the communication complexity can be reduced.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S300 - S309"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701533","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed optimization is an important direction of research in modern optimization theory. Its applications include large scale machine learning, distributed signal processing and many others. The paper studies decentralized min-max optimization for saddle point problems. Saddle point problems arise in training adversarial networks and in robust machine learning. The focus of the work is optimization over (slowly) time-varying networks. The topology of the network changes from time to time, and the velocity of changes is limited. We show that, analogically to decentralized optimization, it is sufficient to change only two edges per iteration in order to slow down convergence to the arbitrary time-varying case. At the same time, we investigate several classes of time-varying graphs for which the communication complexity can be reduced.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.